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Chapter 1

Introduction

“Ta panta rhei” Heraclitus



1.1. Background and motivation

1.1 Background and motivation

A brief glance at the surrounding world will reveal the abundant pres-
ence of fluids. All carbon-based life on Earth would not exist without fluids.
Hence, the presence of fluids is a complete and absolute necessity for our
existence. Most interestingly, not only the presence, but also the behaviour
that fluids exhibit, is equally essential for the existence of life forms. The
water flow circulation in the hydrological cycle supports energy exchanges
among the atmosphere, ocean and land, which is part of the Earth’s cli-
mate and has a considerable influence on the natural climate variability.
Also, the water circulation in the ocean supports mixing processes that are
essential for heat and carbon balances, efficient biological filtration, as well
as providing a food delivery service to a variety of organisms, etc.

It is obvious that any knowledge on fluid behaviour will be beneficial for
numerous aspects of our life. There are three main approaches to study fluid
dynamics: (i) experimental, (ii) theoretical and (iii) computational. Due
to their direct relevance to the thematics of this thesis, we will concentrate
mainly on the last two approaches, which are one of the central themes of
modern applied mathematics.

The mathematical investigation of fluid dynamics has been a challeng-
ing quest. It has resulted not only in significant theoretical and prac-
tical knowledge on a wide variety of fluid mechanics problems, but also
stimulated many studies in pure and applied mathematics. Many famous
mathematicians from various generations, such as Newton, Euler, Lagrange,
Stokes, Kolmogorov and Leray, have their mark on this subject. Yet, there
are many unanswered questions and considerable progress is still being
made.

Early formal records of fluid motion studies date back to 15th century
with the works of Leonardo da Vinci, but basic practical observations and
understanding of fluid behaviour were noted much earlier, already from the
time of the ancient Egyptians. The water flushing toilet drainage system
(similar to those in modern life) in the houses of ancient Romans is evidence
of good understanding of fluid motion. Moreover, the Roman bridges (aque-
ducts) are still considered a tremendous engineering masterpiece. These
examples suggest that reasonable amount of knowledge of fluid dynamics
was accumulated to enable such exceptional applications. In 1752, L. Euler
presented the first system of equations for modelling an incompressible fluid
flow, which subject to minor corrections is widely known as the Euler equa-
tions. The father and son Bernoulli continued the theoretical discussions
on the fluid motion by introducing the famous Bernoulli equation. Later
in the 1820s, a complete system of partial differential equations (PDE)
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Introduction

was introduced by C. Navier and expanded further by G. Stokes. In fact,
the system, initially proposed by Navier, should have been the basis of a
molecular dynamics model. However, the laws of interaction between the
molecules introduced by Navier were noticed to be inconsistent from the
physical point of view for various materials and, in particular, for liquids.
Only twenty years later, the same equations were re-derived by Stokes in
a quite general manner by means of the theory of continua. These are
the widely known Navier-Stokes equations, and they are present directly or
indirectly in any mathematical model of fluid dynamics.

Any large scale fluid motion is governed by the Navier-Stokes equations
coupled with appropriate boundary conditions (e.g. solid walls or dynamic
and kinematic boundary conditions at a free surface). Generally, this sys-
tem of equations models any compressible and incompressible viscous fluid
flow. However, various simplified mathematical models can be derived from
the Navier-Stokes equations by making different assumptions. For exam-
ple, if the fluid is assumed to be inviscid (a very common assumption for
free surface waves) the Euler equations arise. Under the assumption of the
flow being irrotational and inviscid, the full Navier-Stokes equations are
simplified to potential flow theory, where the velocity is represented via the
gradient of a scalar field, the velocity potential. The potential flow assump-
tion is successfully used in various free surface water wave models. Under
the assumption that the water depth is much smaller than the length of the
waves, the Navier-Stokes equations reduce to the shallow water equations,
that are widely used in models for the wave motion near the shore and
long tsunami waves in the ocean. It is apparent, that all these simplifica-
tions were made to solve, at least partially, the full system of Navier-Stokes
equations. For some of these models (under various restrictions) analytical
or semi-analytical solutions do exist, however, in general, they can not be
solved with analytical techniques.

Until the middle of the 20th century there were mainly two approaches
for studying fluid dynamics: theoretical and experimental. Since then, due
to the major increase in power of modern computers, a new opportunity to
study fluid dynamics is gaining popularity: computational fluid dynamics,
or CFD in brief. During the past decades, this has resulted in a shift of
focus from experimental and analytical techniques to numerical solutions
of the equations of fluid mechanics. In engineering, CFD is now one of
the major tools for fluid flow analysis. CFD is also an important tool to
study fundamental flow physics, since it allows idealised ”experiments” and
provides a wealth of data that are often difficult to obtain experimentally.
The importance of CFD has stimulated the development of new numerical
techniques that allow the robust, accurate and fast approximation of con-
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1.1. Background and motivation

tinuum models with numerical solutions (digital simulations). The general
underlying idea is to replace the continuous fields in the respective system
with a corresponding discrete counterpart. This process, called discreti-
sation, allows one to obtain a numerical solution of a problem even if the
(exact) solution of the original continuous equations is hard or impossible to
obtain. The numerical solution will, however, only be an approximation of
the analytical solution. Nevertheless, for properly designed numerical algo-
rithms an increase in the computational resources (number of grid points,
particles, etc.) will reduce the error according to the method’s order of
accuracy.

The main focus of this thesis is on the computation of inertial and water
waves, using a particular class of numerical models. Numerical solutions
for water wave models can largely be classified into the following categories

• Discrete particle based numerical methods: This class of nu-
merical models is mainly based on a discrete particle representation of
the fluid. The fluid and free surface motion are described through the
movement of a large collection of particles. These methods are mainly
used for breaking waves. The main representatives of such models
are smoothed-particle hydrodynamics (SPH) [41] and the particle fi-
nite element method (PFEM) [49]. In SPH, the dynamics is defined
via a Lagrangian description (the position and physical properties of
the particles are described in terms of the material or referential co-
ordinates and time). In PFEM, each particle also moves based on its
mass and the external/internal forces applied to it. These Lagrangian
methods are quite robust, but tend to be rather inaccurate and in-
efficient for real life problems, due to the large number of particles
needed to obtain even a relatively small accuracy.

• PDE-based numerical discretisations: This class of numeri-
cal models is based on a direct discretisation of partial differen-
tial equations representing fluid flow expressed in material coordi-
nates. The discretisation techniques may vary, starting from the
simplest and historically oldest finite difference method (FDM) to
the more recent finite volume method (FVM), [30], finite element
method (FEM), [96], and the discontinuous (Galerkin) finite element
method (DGFEM), [83, 46, 57]. For an overview on these methods,
see [26]. There are also many variations of these numerical methods,
such as the volume of fluids method (VOF) for multiphase flows, i.e
[47], the immersed boundary method (IBM), i.e [81], and the bound-
ary element method (BEM), i.e [50]. All mentioned methods rely on
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a mesh-based approximation. The main difference is the numerical
approximation.
In the FDM, a grid is used and the spatial derivatives at the nodal
points are approximated by finite differences. One of the most ap-
pealing aspects of this method is its simplicity, easy and fast imple-
mentation. Finite difference methods are, however, difficult to use
for the discretisation of partial differential equations on domains with
a complex shape.
In the FVM, the computational domain is divided into a number of
elements and the integral form of the conservation laws is the starting
point for the numerical discretisation. In each element the solution
is assumed to be constant. The flux terms at the element bound-
aries need to be chosen carefully to ensure numerical stability. For
higher order accuracy a reconstruction process is needed to obtain
a more accurate representation of the solution using data in neigh-
bouring elements. The main advantage of the FVM over the FDM
is the geometric flexibility and the exact preservation of conservative
variables.
In FEM the numerical discretisation is based on a variational for-
mulation or more generally a Galerkin weak formulation. In clas-
sical, node based FEM the local solution in every element in an
(un)structured mesh is expressed as a linear combination of locally
defined basis functions. In this case, every element shares nodes
with neighbouring elements, which enforces continuity of the global
numerical solution. Extension to higher order approximations is rel-
atively straightforward, unlike in FVM.
A smart combination of FVM and FEM discretisation methods re-
sults in the discontinuous Galerkin finite element method (DGFEM).
In DGFEM, the domain of the problem is also tessellated using a col-
lection of non-overlapping elements. On each element the solution is
approximated by a linear combination of basis functions without en-
forcing continuity of the approximation with neighbouring elements.
Now unlike the nodal FEM method, the set of basis functions can
be easily varied from element to element. The DGFEM results in
a rather weak coupling of the solution between different elements,
which is beneficial for h and p-adaptation in which the mesh is, re-
spectively, locally refined or the local polynomial order of the basis
functions is adjusted.

Many PDE based mathematical models have a variational structure,
which expresses important features of the problem, such as energy
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conservation and a Hamiltonian structure. Important physical phe-
nomena then can be represented by an energy-related functional, the
Lagrangian (e.g. [76]). This representation qualitatively differs from
the PDE-representation, even though it can be reduced to it. In con-
trast to the PDE representation, the variational description models
the dynamics of the system via specification of the systems energy
behaviour. This formalism naturally embeds all conservation laws
of the system and preserves the symmetry and other mathemati-
cal properties. Because of the emphasis on energy and conservation
principles, a variational formulation can provide physical insight into
the dynamical processes not readily apparent from the PDE formu-
lation. Moreover, the system described via the variational formalism
is coordinate independent and has a concise and exquisite structure.

An important class of variational models also has a Hamiltonian
structure. The Hamiltonian formulation is a system with finite or
infinite number of degrees of freedom with a specific structure. The
whole dynamics is described using a phase-space and two geometric
objects: the total energy functional – the Hamiltonian H – and a
skew-symmetric Poisson bracket { , } [9, 76, 92]. The time evolution
of a general state functional F is then described by the following
expression

dF
dt

= {F ,H}. (1.1)

The (generalised) Poisson bracket { , } has to satisfy the following
properties:

skew-symmetry: {F ,H} = −{H,F}, (1.2)

linearity: {αF + βG,H} = α{F ,H}+ β{G,H}, (1.3)

the Jacobi identity: {F , {G,H}}+ {G, {H,F}}+ {H, {F ,G}} = 0
(1.4)

the Leibniz identity: {FG,H} = F{G,H}+ {F ,H}G, (1.5)

where α and β are constants, and F , G and H arbitrary functionals.
The skew-symmetry of the bracket automatically results in energy
conservation: dH/dt = {H,H}=0.

This elegant geometrical formalism is not only succinct and has a
unified structure, but it also embeds the theory of symmetries. In
addition, the Hamiltonian geometrical structure has a direct con-
nection to conservation laws, which makes it, in principle, easier to
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construct approximations that conserve discrete analogues of the ex-
act constants of motion. Moreover, it can identify new conservation
laws (somewhat artificial), which arise from various discretisations.
In other words, Hamilton’s and Lagrange’s mechanics are based on
quantities such as energy and action, which from a theoretical point
of view are arguably more fundamental than the usual quantities such
as position and velocity. It is, essentially, a more holistic approach
to represent the dynamics: its specifies the energy behaviour, for any
arbitrary system, and the whole of its future motion is determined
from there.

From latter follows, that discretisations based on variational or Hamil-
tonian formalisms may inherently possess some or even all properties
of the underlying formalism, but it can be highly nontrivial to develop
numerical discretisations that preserve this structure.

1.2 Mathematical modelling of

water waves

Generally speaking, wave motion is energy transportation from one
point to another without (or almost without) transferring the mass of the
continuum oscillations, which are recognised as waves. There is a whole va-
riety of oscillations and waves occurring in different media and at all scales:
from elementary particles to gravitational waves in general relativity theory.

In general, while attempting to model the propagation and transfor-
mation of water waves, one has to take care that the factual absence of
dissipation is also reflected in the numerical discretisation for it to be of
practical value. As a consequence, numerical models for the various inter-
nal and water wave problems discussed in this thesis are based mainly on
a Hamiltonian representation. This not only avoids numerical dissipation
and spurious modes, but also preserves conservation laws associated with
physical phenomena.

The first mathematical model for fluid dynamics in a variational frame-
work was formulated by Clebsch in 1859, [22]. A set of PDEs for an inviscid,
incompressible fluid was derived from the variational formalism. Additional
results were obtained by Hargreaves [45], and extended by Bateman [11]
and later Luke [60] to include appropriate boundary conditions for incorpo-
rating a free surface. After those pioneering studies the variational formal-
ism has gained popularity and a large series of works have been published
[31, 108, 95, 13, 90].
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The Hamiltonian formalism in fluid dynamics was introduced to the sci-
entific community with works of Arnold [9] on canonical Hamiltonians, and
Zakharov [110], Broer [20] and by Miles [75], on the Hamiltonian dynam-
ical equivalent of Luke’s variational model for free surface water waves.
The Hamiltonian formalism for water waves in irrotational, incompress-
ible flow is discussed in [25, 74, 75, 110], where the velocity potential and
free surface elevation are canonically conjugated. Hamiltonian systems in
canonical form for incompressible flows with the vorticity are discussed in
[1, 23, 56, 63].

The utilisation of a continuous Hamiltonian formulation does not auto-
matically result in a discretisation with zero numerical dissipation and the
preservation of conservation laws for a given problem in fluid dynamics. A
specific discretisation has to be applied to preserve the unique properties
of the continuous model at the discrete level. In this work we have chosen
a DGFEM method for a symmetry and structure preserving discretisation
of given a Hamiltonian formulation. The method described in this thesis
adds a novel numerical model to the limited number of applications in fluid
dynamics that use a variational or Hamiltonian formulation in combination
with a (DG)FEM discretisation [5, 109]. The motivation and advantages
of this choice are discussed in corresponding chapters.

1.2.1 Waves in the interior of fluids

Waves in fluids owe their existence to restoring forces, acting on a per-
turbation of a background equilibrium state. This initial perturbation is
driven back towards its position, overshoots since it has a finite velocity
when reaches it, and then the sign of the forces reverse. This process is
repeated, resulting in oscillation. The type of wave depends on the origin
of the restoring force. For example, surface water waves are generated due
to the gravity driven restoring force and the surface tension (small capil-
lary waves at the surface); sound waves owe their existence to the pressure
gradient; Poincaré waves and Rossby waves occur mainly due to Coriolis
forces. The relevance of a particular type of the wave depends on the scale
and specific setting one is interested in.

Here, we are interested in a particular class of water waves that prop-
agate through the fluid, called internal waves, which have their maximum
amplitude in the interior of the fluid. Two main representatives are internal
gravity waves and inertial ‘gyroscopic’ waves. The origin of these waves is
different. Internal gravity waves occur in both density-stratified and rotat-
ing fluids, as well as in the combined case, but the main restoring force is
gravity. Unlike internal gravity waves, inertial ‘gyroscopic’ waves owe their
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existence to Coriolis forces only.
Inertial ‘gyroscopic’ waves are not widely known and thus not exten-

sively studied. A more detailed discussion of these waves and their unique
behaviour (chaotic wave attractors) in particular setups, can be found in
Chapter 2 (numerical solution) and Chapter 3 (semi-analytical solution).

1.2.2 Free surface waves

In contrast to internal waves, free surface waves are easy to observe ex-
perimentally, one just needs to track the motion of the free surface. These
free surface waves, as seen in the oceans, seas and lakes, are (in general)
generated by wind and influenced by tides. However, after reaching equilib-
rium the propagation of the wave (to a greater extent) is due to the Earth’s
gravitational restoring force. Basically, the energy produced by the wind is
travelling by means of a deformation of the fluid surface (molecules remain
at the same position on average) towards the shore and the wave is breaking
near the shallower regions, releasing most of the transferred energy.

Usually, free surface waves are classified into two categories: deep-water
waves and shallow-water waves. This distinction between deep and shallow
waves does not depend directly on the absolute water depth. It is rather
determined by the ratio of the water depth to the length of the wave. The
dynamics of the surface water waves changes quite drastically from deep to
shallow water. Thus, the numerical models should also account for these
differences. A Hamiltonian based free surface water wave model for the
deep-ocean that includes vorticity is discussed in Chapter 4.

1.3 Outline of the thesis

This thesis consists of an introduction, three main chapters and an
appendix. The material of the chapters is quite independent, thus the
chapters can be read separately.

In Chapter 1, a brief introduction to the fluid dynamics is given. It
includes a short historical review of mathematical models for fluid flows. In
particular, variational and/or Hamiltonian based systems are highlighted,
due to their relevance to this thesis. The presented material is compiled
using following sources [107, 35, 72, 70, 68]

In Chapter 2, a novel Hamiltonian based DGFEM discretisation for
linear inviscid fluid flows in a rotating domain is introduced. Initially, the
discretisation is presented in a compressible setup to enable intermediate
verification against an analytical solution of compressible inviscid fluid flow,
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thus validating the chosen approaches and discretisation technique. Next,
the incompressible limit is achieved by application of the Dirac constraints
theory. The resulting DGFEM discretisations in both the compressible
and incompressible regimes inherit the Hamiltonian properties of the orig-
inal continuous representation. Several numerical test cases are discussed,
including a simulation of inertial waves in a rotating rectangular paral-
lelepiped and allegedly chaotic wave attractors in a tilted parallelepiped.
This chapter is an extended version of the material presented in [79].

In Chapter 3, a new semi-analytical solution for inertial waves in a rotat-
ing rectangular parallelepiped is presented. This semi-analytical solution
is compared with another semi-analytical solution, available in [62], and
its advantages and disadvantages are identified. As an alternative, a FEM
based numerical solution is presented, with further qualitative comparisons
with semi-analytical solutions. This chapter is based on [78].

In Chapter 4, the Hamiltonian structure of nonlinear three dimensional
compressible fluid flow in a rotating domain with a free surface is deter-
mined. Even though generally the rotation of the domain (e.g Earth rota-
tion) has a small influence on free surface waves it allows the modelling of
waves subject to Coriolis forces.

In the Appendix A, the philosophy and structure of the new hpGEM2.0,
C++ software framework developed for a fast and robust implementation
of DGFEM discretisations, is summarised. Additionally, a small tutorial is
given, based on particular example, the implementation of the Hamiltonian
based DGFEM discretisation that was introduced in Chapter 2.

Finally, conclusions and recommendations for the future work are given
in Chapter 5.
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Chapter 2

Hamiltonian DGFEM for
linear Euler equations:
inertial waves

A discontinuous Galerkin finite element method (DGFEM) has been
developed and tested for the linear, three-dimensional, rotating in-
compressible Euler equations. These equations admit complicated
wave solutions, which poses numerical challenges.

These challenges concern: (i) discretisation of a divergence-free ve-
locity field; (ii) discretisation of geostrophic boundary conditions
combined with no-normal flow at solid walls; (iii) discretisation of
the conserved, Hamiltonian dynamics of the inertial-waves; and, (iv)
large-scale computational demands owing to the three-dimensional
nature of inertial-wave dynamics and possibly its narrow zones of
chaotic attraction. These issues have been resolved, for example: (i)
by employing Dirac’s method of constrained Hamiltonian dynamics
to our DGFEM for linear, compressible flows, thus enforcing the in-
compressibility constraints; (ii) by enforcing no-normal flow at solid
walls in a weak form and geostrophic tangential flow along the wall;
and, (iii) by applying a symplectic time discretisation.

We compared our simulations with exact solutions of
three-dimensional incompressible flows, in (non)rotating periodic and
partly periodic cuboids (Poincaré waves). Additional verifications
concerned semi-analytical eigenmode solutions in rotating cuboids
with solid walls. Finally, a simulation in a tilted rotating tank, yield-
ing more complicated wave dynamics, demonstrates the potential of
our new method.



2.1. Introduction

2.1 Introduction

In the geophysical context, wave motion plays a very important role in
energy and angular momentum transport within the oceans and lakes, in
particular in the interior of the fluid. These waves often cause mixing, and
this mixing forms a very important part of the ocean circulation. Internal
gravity (e.g., [100]) and ‘gyroscopic’ waves, further on referred to as inertial
waves (e.g., [43]), are the main representatives of transverse ocean waves
which have their maximum particle displacement not at the free surface,
but in the interior of the fluid domain. In contrast to internal gravity waves,
where density stratification is the main restoring mechanism, inertial waves
exist solely due to the angular momentum stratification. Coriolis forces
caused by the rotation of the Earth act as a restoring force on the wave
motion. While the influence of rotation in comparison with stratification
in geophysical applications is weaker, inertial waves remain of importance
in several cases. Inertial waves influence the liquid outer core of the Earth
([64, 2, 3, 88]), orbiting and/or spinning spaceships and satellites carrying
liquid payload ([3, 66]), relatively homogeneous parts of the ocean ([104, 8,
33]), lake hydrodynamics ([32]), and are important in some astrophysical
applications ([27]). An important property of these inertial waves is that
their propagation direction is determined by ratio of the wave frequency
and Coriolis frequency (at twice the rotation rate), and is not altered by
the reflection from the boundaries of the fluid domain. The latter results
in wave focussing and defocussing phenomena in the absence of a “local
reflectional symmetry”, in which case the domain walls are asymmetric, i.e.,
neither parallel nor perpendicular to the rotation axis. Repeated reflection
in which wave focusing is dominating gives in general rise to wave attractors:
narrow regions onto which the wave energy converges. In a limited set of
geometries these attractors were theoretically predicted ([82, 98, 99, 89, 69])
and experimentally observed ([69]), especially in quasi-2D set-ups. The
purpose of this work is to provide numerical tools such that we are able to
increase our understanding of inertial waves via numerical simulations of a
rotating homogeneous fluid.

Inertial waves are best studied in isolation, in a homogeneous fluid,
in the absence of viscosity and nonlinearity. We therefore focus on the
development and testing of finite element numerical solution techniques
for the linear, three-dimensional incompressible Euler equations in rotating
(closed) domains, instead of focussing directly on the more complex Navier-
Stokes equations.

It is useful to contrast two types of waves admitted by the linear, in-
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compressible Euler equations: (a) inertial waves in closed rotating domains,
and (b) surface-trapped waves in half-closed domains with the free surface
of the liquid acting under gravity. Surface waves arise due to the restoring
force of gravity at the interface between a heavier fluid (e.g., sea water) and
a lighter fluid or vacuum. Linear surface waves in the absence of Coriolis
forces only involve the potential-flow component, while the vortical com-
ponents of the velocity or the vorticity (the three-dimensional curl of the
velocity vector) are zero. In contrast, inertial waves involve nonzero vorti-
cal components of the velocity and exhibit multi-scale behaviour, especially
when wave focusing occurs. These inertial-wave solutions are thus challeng-
ing to compute, either analytically or numerically. In addition, the linear
three-dimensional Euler equations form a Hamiltonian system. The wave
dynamics of both wave types thus concern geometric, Hamiltonian dynam-
ics, as an initial value problem, in which invariants such as mass, energy and
phase-space volume derive from this geometric structure. Furthermore, the
Hamiltonian system is constrained since the total density is constant and
the divergence of the velocity field is zero. Preservation of these discrete
invariants in the numerical discretisation ensures numerical stability with-
out any loss of wave amplitude due to artificial numerical damping. The
compatible numerical discretisation we aim to develop for these linear in-
compressible Euler equations should therefore preferably inherit a discrete
analog of this characteristic Hamiltonian geometric structure.

To wit, our goal is to develop and test a Hamiltonian discontinuous
Galerkin finite element method (DGFEM) for inertial-wave dynamics of the
linear, incompressible, three-dimensional, rotating Euler equations. The
features of the inertial waves indicate that the following mathematical and
numerical challenges should be met: (i) The constraint of incompressibility
of the flow, or the zero divergence of the velocity, needs to be inherited
by the discretisation in a weak or strong form. This is a classical issue in
computational fluid dynamics, in which the pressure acts as a Lagrange
multiplier to ensure time consistency of the secondary constraint of incom-
pressibility (namely the zero divergence). The zero perturbation density
acts here as primary constraint. (ii) The discretisation needs to satisfy the
geostrophic balance relations along the wall together with the no-normal
flow condition imposed either weakly or strongly. Rotation in combina-
tion with the no-normal flow requirement at solid walls yields geostrophic
balance conditions on the tangential velocity components. It is nontrivial
to satisfy these consistency boundary conditions discretely (e.g., see [6]).
(iii) A discrete analog of the geometric Hamiltonian structure needs to be
established to ensure conservation properties of the system. In particular,
it would guarantee preservation of wave amplitude and phase space volume,
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such that long-time calculations remain stable and relevant over many wave
periods [44]. The use of stable dissipative, time integrators would destroy
the carefully preserved geometric structure of the spatial discretisation de-
signed for Hamiltonians in classical mechanics. Hence, symplectic time
integrators are required.

The need to deal with local fine scales and the presence of strong gra-
dients led to our choice for discontinuous Galerkin finite element methods
in the first place. Furthermore, DGFEM permits large gradients and hp-
refinement. The computational linear algebra demands are handled by us-
ing PETSc [10, 91] in our versatile DGFEM software environment hpGEM
[80].

The outline of the paper is as follows and concerns all four challenges.
In Section 2, we review the equations of motion for the linear compressible
and incompressible Euler equations and their Hamiltonian formulations. It
also includes an exposition of Dirac’s method of constraints for the linear
compressible Euler equations, with zero perturbation density as primary
constraint [16, 93]. Concerning challenges (i)–(ii), in Section 3, we de-
rive the general Hamiltonian DGFEM for an incompressible flow from the
Hamiltonian structure for a compressible flow via Dirac’s theory. Concern-
ing challenge (iii), in Section 4, we present a proper time integrator for the
presented Hamiltonian dynamics and discuss some of the properties of the
resulting time and space discrete numerical schemes. Numerical verifica-
tions are given in Section 5, where DGFEM simulations are compared with
exact solutions of incompressible flow in a rotating triple-periodic domain
and a partially closed cuboid with periodicity in one direction, and with
semi-analytical series solutions for incompressible flow in closed cuboids.
Additionally, numerical results on chaotic wave attractors are presented.
Conclusions are drawn in Section 6.

2.2 Continuum theory for (in)compress-

ible fluid

2.2.1 Governing equations

Compressible fluid flow in a domain D is governed by the non-linear
compressible Euler equations in a rotating frame with angular velocity
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Ω = (Ω1,Ω2,Ω3)T :

∂û

∂t
= −2Ω× û− (û · ∇)û− ρ̂−1∇P̂ (ρ̂), (2.1a)

∂ρ̂

∂t
= −∇ · (ρ̂û), (2.1b)

where û = û(x, y, z, t) = (û, v̂, ŵ)T is the three-dimensional velocity field,
ρ̂ = ρ̂(x, y, z, t) a scalar density field, and P̂ = P̂ (ρ̂) the barotropic pres-
sure. Cartesian coordinates x = (x, y, z) and time t are used; the three-
dimensional differential operator is given by∇ = (∂/∂x, ∂/∂y, ∂/∂z)T . The
boundaries of the domain D are denoted by ∂D = ∪i∂Di.

We linearise the compressible Euler equations (2.1) around a rest state
with u0 = 0 and ρ0 = const., such that û = 0 + εu and ρ̂ = ρ0 + ερ,
where u and ρ are the perturbation velocity and density fields, respectively.
Linearisation yields the linear compressible Euler equations in a rotating
domain

∂u

∂t
= −∇(

c2
0

ρ0
ρ)− 2Ω× u, (2.2a)

∂ρ

∂t
= −∇ · (ρ0u), (2.2b)

where c0 =

√
∂P̂ /∂ρ|ρ=ρ0 is the constant, acoustic wave speed. Two types

of boundary conditions will be discussed: periodic and solid-wall boundary
conditions. For fixed, solid-wall boundary conditions the normal component
of the velocity field at the boundaries is zero u · n̂ = 0, with n̂ the outward
normal vector at the boundary. If we multiply both sides of the momentum
equations (2.2a), restricted to the domain boundary, with the normal vector
n̂,

∂(u · n̂)

∂t
= −∇(

c2
0

ρ0
ρ) · n̂− (2Ω× u) · n̂, (2.3)

and apply the no-normal flow condition u · n̂ = 0, we obtain a restriction
on the density gradient

c2
0

ρ0
∇ρ · n̂ = −(2Ω× u) · n̂. (2.4)

In the absence of domain rotation, the right side of (2.4) is zero at the
boundary, which indicates that the normal component of the density gra-
dient is also zero at the boundary. In contrast, with rotation the normal
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component of the density gradient is balanced by the projected components
of the velocity field. This balance between the density/pressure gradient
force and the Coriolis force is called geostrophic balance. Implementation
of the boundary condition therefore becomes more challenging due to the
mandatory satisfaction of geostrophic balance.

In the limit of zero Mach number, M0 = V0/c0 → 0, with V0 a reference
velocity of the fluid, the linear incompressible Euler equations arise from
(2.2) as

∂u

∂t
= −2Ω× u−∇P, (2.5a)

∇ · u = 0, ρ = 0, (2.5b)

where P is the pressure. Note that the constraint on the perturbation
density ρ ensures that the total density is constant for all time.

2.2.2 Hamiltonian framework

In the following sections we introduce the Hamiltonian framework for
linear compressible and incompressible fluid flows, including the connection
with the corresponding partial differential equations (PDEs).

Bracket for linearised compressible flow

Hamiltonian dynamics of compressible fluid flow, cf., [19, 77] governed
by the linear equations (2.2) in D ⊂ R3 is given by

dF
dt

= {F ,H} =

∫
D

(
δH
δρ
∇ · δF

δu
− δF
δρ
∇ · δH

δu
− 2Ω

ρ0
× δH
δu
· δF
δu

)
dx,

(2.6)

with Hamiltonian energy functional

H = H[u, ρ] ≡
∫
D

1

2

(
ρ0|u|2 +

c2
0

ρ0
ρ2
)
dx. (2.7)

The definition of the functional derivative is

δH ≡ lim
ε→0

H[u + εδu, ρ+ εδρ]−H[u, ρ]

ε
=

∫
D

[
δH
δu
· δu +

δH
δρ
δρ

]
dx.

(2.8)
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The functional derivatives of H follow from (2.7) and (2.8), and are

δH
δu

= ρ0u,
δH
δρ

=
c2

0

ρ0
ρ. (2.9)

The Poisson bracket { , } in (2.6) satisfies all properties: skew-symmetry
is easy to spot from the structure of the bracket; the bracket is obviously
bilinear, thus the linearity and Leibniz identity are automatically satisfied;
and, the Jacobi identity can be checked directly, given suitable boundary
conditions.

To specify Hamiltonian dynamics in the domain D one has to specify
appropriate boundary conditions. Mathematical models based on PDEs
usually specify boundary conditions on the relevant variables at the bound-
ary. Similarly, in the Hamiltonian formulation boundary conditions can be
imposed by choosing appropriate function spaces for the arbitrary func-
tional F .

As an example, we will show the equivalence between the Hamiltonian
framework (2.6)–(2.7) and the PDE representation (2.2) of compressible
fluid flow in a rotating domain D bounded by solid walls. The momentum
and continuity equations can be obtained if the following functionals are
chosen as follows

Fu ≡
∫
D

u(x, t) ·Φ(x)dx (2.10a)

Fρ ≡
∫
D
ρ(x, t)φ(x)dx, (2.10b)

with φ ∈ Q and Φ ∈ Y arbitrary test functions, where

Q = {φ ∈ L2(D)} (2.11)

Y = {Φ ∈ (L2(D))3 and ∇ ·Φ ∈ L2(D) : n̂ ·Φ = 0 at ∂D}, (2.12)

and L2(D) is the space of square integrable functions on D. To incorporate
slip flow boundary conditions at ∂D we restrict the space for the test func-
tions Φ at the boundary. Corresponding functional derivatives of (2.10a)
and (2.10b) thus become

δFρ
δρ

= φ(x) and
δFu

δu
= Φ(x), with

δFu

δu
· n̂ = 0 at ∂D. (2.13)

Using functionals (2.10a) and (2.10b), with corresponding functional deriva-
tives (2.13) and (2.9), in the bracket formulation (2.6) yields the momentum
(2.2a) and continuity (2.2b) equations for linearised compressible flow, re-
spectively. We also used Gauss’ law combined with (2.13). The restricted
test function arising from functional Fu ensures the satisfaction of the
boundary conditions at the PDE level.

17



2.2. Continuum theory for (in)compressible fluid

Construction of a Dirac-bracket for linearised incompressible
flow

Dirac’s theory of constrained Hamiltonian systems ([28, 93, 105]) is
used to derive the linearised incompressible Euler equations as the limit of
the Hamiltonian structure of the linearised compressible Euler equations.
Basically, Dirac’s theory enforces a constant density constraint via Lagrange
multipliers onto the derived compressible Hamiltonian framework [16, 19].

Due to linearisation, the constant total density constraint ρ̂ = const
transforms into the perturbation density constraint

ρ(x) = 0. (2.14)

It will act as a primary constraint, to be incorporated into the compressible
Hamiltonian dynamics (2.6) via a Lagrange multiplier field. In a consistent
theory, the constraint must be preserved by the evolution of the system.
This leads to several possible outcomes: (i) the consistency requirement
results into, modulo constraints, an equation of essentially the form 1 = 0;
(ii) it leads to an equation of the form 0 = 0; (iii) we obtain an equa-
tion which resolves the unknown Lagrange multiplier, or (iv) it yields a
secondary constraint. Case (i) implies inconsistent equations of motion;
they do not posses any solution. Case (ii) is the desired outcome. Case
(iv) introduces new secondary constraints, preservation of which must be
checked by repeating the procedure until either we encounter case (i) or all
constraints lead to case (ii). This is the main idea of Dirac’s algorithm.

A Lagrange multiplier λρ(x, t) is introduced to enforce the primary
constraint. This constraint, or any arbitrary functional F [ρ] thereof, must
be preserved in time. Hence, the evolution of such a functional must remain
naught, i.e.,

dF [ρ]

dt
= 0 = {F [ρ],H}+

∫
D
λρ(x

′){F [ρ], ρ(x′)}dx′. (2.15)

From Poisson bracket (2.6), we deduce that {F [ρ], ρ(x′)} = 0 and, therefore,
the Lagrange multiplier remains undetermined. It gives, however, rise to a
secondary constraint

0 ={F [ρ],H} = −
∫
D

δF [ρ]

δρ
∇ · (ρ0 u(x)) dx. (2.16)

Since the functional F [ρ] is arbitrary in (2.16), it follows that

∇ · u = 0 (2.17)
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should hold as well. Note that δF [ρ]/δρ serves as arbitrary test function
and that the secondary constraint implies that the velocity is divergence-
free. Next, both constraints

ρ(x) = 0 and ∆(x) = ∇ · u(x) = 0 (2.18)

will be enforced simultaneously as primary constraints, also in time.
For this reason, we introduce Lagrange multipliers λρ = λρ(x, t) and

λ∆ = λ∆(x, t). The two consistency requirements are stated in weak form
by using two (different) arbitrary functionals F [ρ] and F [∆], as follows

dF [ρ]

dt
= 0 = {F [ρ],H}+

∫
D
λ∆(x′){F [ρ],∆(x′)}dx′, (2.19a)

dF [∆]

dt
= 0 = {F [∆],H}+

∫
D
λρ(x

′){F [∆], ρ(x′)}dx′

+

∫
D
λ∆(x′){F [∆],∆(x′)}dx′, (2.19b)

where we omitted stating the explicit time dependence. An elaborate cal-
culation of the brackets in (2.19a) yields

0 =

∫
D

δF
δρ

(
−∇ · (ρ0u) +∇2λ∆

)
dx−

∫
∂D

δF
δρ

n̂ · ∇λ∆dS (2.20)

with surface element dS. By using the secondary constraint in (2.20), and
the arbitrariness of the functional F [ρ] in the interior and at the boundary,
we find that

∇2λ∆ = 0 with n̂ · ∇λ∆ = 0. (2.21)

Its solution is λ∆ = cst.
To analyse (2.19b), we first relate the functional derivative of F [∆] with

respect to ∆ to the one with respect to u, as follows

δF [∆] =

∫
D

δF [∆]

δ∆
δ∆ dx = −

∫
D
∇δF [∆]

δ∆
· δu dx, (2.22)

where we used that n̂ · δu = 0. The last term in (2.19b) cancels af-
ter an integration by parts, by using the additional boundary conditions
n̂ · ∇λ∆ = 0 and n̂ · ∇(δF [∆]/δ∆) = 0 at ∂D. We subsequently find that
(2.19b) becomes

0 =

∫
D

δF
δ∆

(
∇ · (2Ω× u) +∇2λρ

)
dx−

∫
∂D

δF
δ∆

n̂ ·
(
2Ω× u +∇λρ

)
dS.

(2.23)
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The arbitrariness of F [∆] in (2.23), in the interior and at the boundary,
then implies that

∇ · (2Ω× u) +∇2λρ = 0 on D with
(
2Ω× u +∇λρ

)
· n̂ = 0 on ∂D.

(2.24)
Details in the above calculations have been relegated to Appendix 2.7.1.

The bracket formulation for incompressible flow is now given by

dF [u]

dt
= {F ,H}+

∫
D
λρ(x

′){F , ρ(x′)}dx′. (2.25)

The dynamics is then obtained from (2.25) combined with (2.23) for the
Lagrange multiplier (λ = λρ)

dF
dt

={F ,H}inc ≡
∫
D

[
−2Ω

ρ0
× δH
δu(x)

· δF
δu(x)

+ λ(x)∇ · δF
δu(x)

]
dx,

(2.26a)

0 =

∫
D

δF
δ∆

(
∇ · (2Ω× u) +∇2λ

)
dx−

∫
∂D

(
2Ω× u +∇λ

)
· n̂δF
δ∆

dS,

(2.26b)

with constrained energy functional

H =

∫
D

1

2
ρ0|u|2dx. (2.26c)

It is obtained after application of the primary constraint ρ = 0. The in-
compressible, linear Euler equations can be derived from (2.26) by choosing
functionals

Fu ≡
∫
D

u(x, t) ·Φ(x)dx and F∆ ≡
∫
D

∆(x, t)φ̃(x)dx, (2.27)

where Φ(x) ∈ Y and φ̃(x) ∈ Q with the additional requirement that

n̂ · ∇φ̃ = 0. The functionals in (2.27) lead to the system of equations

∂u

∂t
= −∇λ− 2Ω× u and ∇2λ = −∇ · (2Ω× u), (2.28)

with slip flow u · n̂ = 0 and geostrophic balance
(
2Ω× u +∇λ

)
· n̂ = 0 at

the solid-wall boundary. Notice that the Lagrange multiplier λ = P plays
the role of the pressure P .
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2.3 Discrete Hamiltonian formulation

Discretisations of the earlier derived compressible and incompressible
continuous Hamiltonian formulations will be derived next. There are two
possible choices for a derivation of discrete Hamiltonian dynamics for in-
compressible fluid flow: direct discretisation of the continuous bracket for-
mulation (2.26) for incompressible fluid flow, or application of Dirac’s the-
ory on the discretised Hamiltonian formulation of compressible flow. The
latter approach is preferable for several reasons: (i) a discretisation of the
compressible Hamiltonian formulation is becoming an intermediate check
point for the introduced discretisation algorithm; (ii) avoidance of dealing
with discontinuities of unknown Lagrange multipliers simplifies the pro-
cess; and, (iii) the relatively easy incorporation of boundary conditions
which are set automatically by Dirac’s theory given the proper boundary
conditions for the compressible case. Before proceeding to a discontinuous
Galerkin FEM discretisation, we demonstrate key aspects of the algorithm
on a finite volume (FV) discretisation of the compressible Hamiltonian for-
mulation with consecutive application of Dirac’s theory on a discrete level.
This FV discretisation is equivalent to a DG discretisation with constant
basis functions.

2.3.1 Finite volume discretisation for linear Euler
equations

Discrete compressible dynamics

The three-dimensional linear compressible Euler equations (2.2) are
considered in a periodic rectangular parallelepiped, where an equidistant
mesh is introduced. The equations are scaled for simplicity such that we
effectively can take ρ0 = c0 = 1 in (2.2) (hereafter). A tessellation of this
triple periodic domain results in a collection of elements K with (i, j, k)
index numbering. A FV discretisation for the scaled version of compress-
ible Euler equations (2.2), with a chosen ”antisymmetric θ scheme” for the
spatial derivatives, yields the following discrete equations

d

dt


Ūi,j,k
V̄i,j,k
W̄i,j,k

R̄i,j,k

 = −

 2Ω×

 Ūi,j,k
V̄i,j,k
W̄i,j,k


0

−


Ḡ1
i,j,k

Ḡ2
i,j,k

Ḡ3
i,j,k

Ḡ4
i,j,k

 , (2.29a)

where Ūi,j,k = Ūi,j,k(t), V̄i,j,k = V̄i,j,k(t), W̄i,j,k = W̄i,j,k(t) and R̄i,j,k =
R̄i,j,k(t) are the time-dependent mean values of u, v, w, ρ in the (i, j, k)-th
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2.3. Discrete Hamiltonian formulation

element and the flux functions are defined by

Ḡ1
i,j,k = −

(R̄i+1,j,k(1− θ) + R̄i,j,kθ)− (R̄i,j,k(1− θ) + R̄i−1,j,kθ)

∆x
, (2.29b)

Ḡ2
i,j,k = −

(R̄i,j+1,k(1− θ) + R̄i,j,kθ)− (R̄i,j,k(1− θ) + R̄i,j−1,kθ)

∆y
, (2.29c)

Ḡ3
i,j,k = −

(R̄i,j,k+1(1− θ) + R̄i,j,kθ)− (R̄i,j,k(1− θ) + R̄i,j,k−1θ)

∆z
, (2.29d)

Ḡ4
i,j,k = −

(Ūi,j,k(1− θ) + Ūi+1,j,kθ)− (Ūi−1,j,k(1− θ) + Ūi,j,kθ)

∆x

−
(V̄i,j,k(1− θ) + V̄i,j+1,kθ)− (V̄i,j−1,k(1− θ) + V̄i,j,kθ)

∆y

−
(W̄i,j,k(1− θ) + W̄i,j,k+1θ)− (W̄i,j,k−1(1− θ) + W̄i,j,kθ)

∆z
,

(2.29e)

with ∆x, ∆y, and ∆z the respective mesh sizes, and 0 ≤ θ ≤ 1.
Energy conservation can be shown by a series of straightforward calcu-

lations: multiply equations (2.29a) by (Ū(i,j,k), V̄(i,j,k), W̄(i,j,k), R̄(i,j,k)), and
sum over all elements. Discretisation (2.29) then leads to energy conserva-
tion, i.e.,

dH

dt
= 0, with H =

∑
(i,j,k)

1

2

(
Ū2
i,j,k + V̄ 2

i,j,k + W̄ 2
i,j,k + R̄2

i,j,k

)
. (2.30)

The latter result suggests there is a discrete Hamiltonian formulation for
(2.29). We first calculate the partial derivatives of the Hamiltonian

∂H

∂Ūi,j,k
= Ūi,j,k,

∂H

∂V̄i,j,k
= V̄i,j,k,

∂H

∂W̄i,j,k
= W̄i,j,k,

∂H

∂R̄i,j,k
= R̄i,j,k

(2.31)

and use these in the right hand side of (2.29a). Subsequently, we mul-
tiply the four equations in (2.29a) by ∂F/∂Ūi,j,k, ∂F/∂V̄i,j,k, ∂F/∂W̄i,j,k,
and ∂F/∂R̄i,j,k, respectively, add them up, and sum over all cells. After
some algebraic manipulations, it yields the Hamiltonian finite-dimensional

22



Hamiltonian DGFEM for linear Euler equations: inertial waves

dynamics

dF

dt
=[F,H]cθ

≡− ∂F

∂Ūk
· 2Ω× ∂H

∂Ūk

+
∂H

∂Ūk
·

 (1− θ)


1

∆x( ∂F
∂R̄i+1

− ∂F
∂R̄k

)
1

∆y ( ∂F
∂R̄j+1

− ∂F
∂R̄k

)
1

∆z ( ∂F
∂R̄k+1

− ∂F
∂R̄k

)

+ θ


1

∆x( ∂F
∂R̄k
− ∂F

∂R̄i−1
)

1
∆y ( ∂F

∂R̄k
− ∂F

∂R̄j−1
)

1
∆z ( ∂F

∂R̄k
− ∂F

∂R̄k−1
)




− ∂F

∂Ūk
·

 (1− θ)


1

∆x( ∂H
∂R̄i+1

− ∂H
∂R̄k

)
1

∆y ( ∂H
∂R̄j+1

− ∂H
∂R̄k

)
1

∆z ( ∂H
∂R̄k+1

− ∂H
∂R̄k

)

+ θ


1

∆x( ∂H
∂R̄k
− ∂H

∂R̄i−1
)

1
∆y ( ∂H

∂R̄k
− ∂H

∂R̄j−1
)

1
∆z ( ∂H

∂R̄k
− ∂H

∂R̄k−1
)


 ,

(2.32)

where Ū = (Ū , V̄ , W̄ )T and k = (i, j, k), and we used the shorthand no-
tation Ri+1 = Ri+1,j,k, et cetera. Repeated indices indicate summation, if
not stated otherwise. By inspection, (2.32) is seen to be anti-symmetric,
and independent of the variables involved. It therefore satisfies all require-
ment of a (noncanonical) Hamiltonian system. The cθ subscript indicates
the cosymplectic form of the Poisson bracket for a FV discretisation of the
compressible Euler equations. Since several brackets appear below, we will
use such subscripts to distinguish the different brackets used hereafter.

Discrete incompressible dynamics

The discrete compressible Hamiltonian dynamics (2.32) with (2.30) is
our starting point for Dirac’s theory of constraints. It will be used to enforce
the density as a constraint into the compressible Hamiltonian formulation.
For simplicity of illustration, we will only consider the case with θ = 0 in
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2.3. Discrete Hamiltonian formulation

(2.32). With some minor index renumbering, we obtain

dF

dt
= [F,H]c0 ≡ −

(
2Ω× ∂H

∂Ūk

)
· ∂F
∂Ūk

−
(

∂H

∂R̄i+1,j,k
− ∂H

∂R̄k

)
1

∆x

∂F

∂Ūk
−
(

∂H

∂R̄i,j+1,k
− ∂H

∂R̄k

)
1

∆y

∂F

∂V̄k

−
(

∂H

∂R̄i,j,k+1
− ∂H

∂R̄k

)
1

∆z

∂F

∂W̄k
−
(
∂H

∂Ūk
− ∂H

∂Ūi−1,j,k

)
1

∆x

∂F

∂R̄k

−
(
∂H

∂V̄k
− ∂H

∂V̄i,j−1,k

)
1

∆y

∂F

∂R̄k
−
(
∂H

∂W̄k
− ∂H

∂W̄i,j,k−1

)
1

∆z

∂F

∂R̄k
.

(2.33)

For the continuous problem the primary constraint is the zero perturbation
density, ρ(x, y, z, t) = 0. For the FV discretisation, it means that the mean
value of the density is zero everyhwere,

R̄k = 0. (2.34)

The primary constraints should hold in time, as a consistency requirement,

0 =
dR̄k

dt
= [R̄k, H]c0 + µp[R̄k, R̄p]c0 , (2.35)

with Lagrange multipliers µp and p = (p, q, r). From (2.33), it follows that
[Rk, Rp]c0 = 0. The Lagrange multiplier thus remains undetermined and a
secondary constraint arises from (2.35) as

Ek ≡− [R̄k, H]c0 =

(
∂H

∂Ūk
+

∂H

∂Ūi−1,j,k

)
1

∆x(
∂H

∂V̄k
+

∂H

∂V̄i,j−1,k

)
1

∆y
+

(
∂H

∂W̄k
+

∂H

∂W̄i,j,k−1

)
1

∆z
(2.36)

=
(Ūk − Ūi−1,j,k)

∆x
+

(V̄k − V̄i,j−1,k)

∆y
+

(W̄k − W̄i,j,k−1)

∆z
= 0.

A closer look at the constraint (2.36) shows that it is a first-order discreti-
sation of the divergence-free velocity condition (2.17). Subsequently, both
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constraints are enforced together, with mandatory preservation in time

0 =
dR̄k

dt
= [R̄k, H]c0 + λUp [R̄k, Ep]c0 , (2.37a)

0 =
dEk

dt
= [Ek, H]c0 + λRp [Ek, R̄p]c0 + λUp [Ek, Ep]c0 . (2.37b)

Application of primary constraint (2.34) in (2.37a) yields
λUp [R̄k, Ep]c0 = 0. The latter equation is a FV discretisation of the Lapla-

cian, as follows shortly, and has as solution λUp = 0. That result simplifies
(2.37b) to

0 = [Ek, H]c0 + λRp [Ek, R̄p]c0 . (2.38)

Further valuation of (2.38) using (2.32) gives an equation for λ ≡ λR

λi+1,j,k − 2λk + λi−1,j,k

∆x2
+
λi,j+1,k − 2λk + λi,j−1,k

∆y2

+
λi,j,k+1 − 2λk + λi,j,k−1

∆z2
= −

[
2Ω×

(
∂H
∂Ūk
− ∂H

∂Ūi−1,j,k

)]
1

∆x

−

[
2Ω×

(
∂H
∂Ūk
− ∂H

∂Ūi,j−1,k

)]
2

∆y
−

[
2Ω×

(
∂H
∂Ūk
− ∂H

∂Ūi,j,k−1

)]
3

∆z
. (2.39)

Note that (2.39) is a discretisation of the Laplacian acting on the Lagrange
multiplier, ∇2λ, on the left-hand-side and the divergence of the rotational
effects on the right-hand-side, corresponding to a discrete version of the
continuous case (2.24). Finally, the bracket for the incompressible case
becomes

dF

dt
= [F,H]incc0 ≡ −

(
2Ω× ∂H

∂Ūk

)
· ∂F
∂Ūk

−
λi+1,j,k − λk

∆x

∂F

∂Ūk

−
λi,j+1,k − λi,j,k

∆y

∂F

∂V̄k
−
λUi,j,k+1 − λUk

∆z

∂F

∂W̄k
. (2.40)

Hence, the constrained dynamics for incompressible fluid flow results in
the Dirac-bracket formulation (2.40) coupled with (2.39) for the Lagrange
multiplier λ, and the discrete energy functional

H =
∑

(i,j,k)

1

2

(
Ū2

k + V̄ 2
k + W̄ 2

k

)
. (2.41)

Proofs of energy conservation and preservation of zero divergence in time
will be presented later for the more general, DGFEM discretisation of in-
compressible Hamiltonian dynamics.
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2.3. Discrete Hamiltonian formulation

2.3.2 Discontinuous Galerkin FEM discretisation
for the linearised Euler equations

In this section, we will introduce a discontinuous Galerkin FEM dis-
cretisation that preserves the Hamiltonian structure of linear, compressible
and incompressible flows. The FV discretisation of the Hamiltonian system
presented above is used as a guide in the choice of the numerical flux.

Finite element space

Let Ih denote a tessellation of the domain D with elements K. The set
of all edges in the tessellation Ih is Γ, with Γi the set of interior edges and
ΓD the set of edges at the domain boundary ∂D. Additional notation is
introduced for the numerical flux, to be introduced shortly. Let e be a face
between ”left” and ”right” elements KL and KR, respectively, with corre-
sponding outward normals nL and nR. When f is a continuous function on
KL and KR, but possibly discontinuous across the face e, let fL = (f |KL)|e
and fR = (f |KR)|e denote the left and right traces, respectively. Let Pp(K)
be the space of polynomials of at most degree p on K ∈ Ih, with p ≥ 0.
The finite element spaces Qh and Yh required are

Qh = {q ∈ L2(D) : q|K ∈ Pp(K),∀K ∈ Ih}, (2.42a)

Yh = {Y ∈ (L2(D))3 : Y |K ∈ (Pp(K))3, ∀K ∈ Ih}. (2.42b)

The number of degrees of freedom on an element is denoted by NK =
dim(Pp(K)).

The discrete energy on the tessellated domain, cf. (2.7), thus becomes

H =
1

2

∑
K

∫
K

(
|uh|2 + ρ2

h

)
dK, (2.43)

where ρh ∈ Qh and uh ∈ Yh. Corresponding variational derivatives are

δH

δuh
= uh and

δH

δρh
= ρh. (2.44)

There is some abuse of notation here, because we use functions F and
H for functionals. However, if approximations uh and ρh are viewed as
finite-dimensional expansions, then function derivatives with respect to the
expansion coefficients emerge.
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Hamiltonian DGFEM discretisation for linearised compress-
ible flow

In this section, we derive a DGFEM discretisation of the Hamiltonian
structure for linearised compressible flow (2.6). The specific functional
F [uh] ≡

∫
D uh ·Φdx is chosen to obtain the discretised momentum equa-

tions in a Hamiltonian framework, with Φ ∈ Yh an arbitrary test function.
The functional derivative with respect to the velocity thus equals

δF

δuh
= Φ. (2.45)

Likewise, a functional F [ρh] ≡
∫
D ρhφdx is needed, with φ ∈ Qh an arbi-

trary test function. Its functional derivative equals

δF

δρh
= φ. (2.46)

Our starting point is to simply limit functionals in the Poisson bracket
(2.6) on tessellation Ih to ones on the approximate finite element space, as
follows

dF

dt
= [F,H]

≡
∑
K

∫
K

(
δH

δρh
∇h ·

δF

δuh
− δF

δρh
∇h ·

δH

δuh
− 2Ω× δH

δuh
· δF
δuh

)
dx

(2.47)

with element-wise differential operator ∇h. After integration by parts of
the first two terms on the right-hand-side of (2.47) and introduction of
numerical fluxes, we obtain

dF

dt
=
∑
K

∫
K

(
−∇h

δH

δρh
· δF
δuh

+
δH

δuh
· ∇h

δF

δρh
− 2Ω× δH

δuh
· δF
δuh

)
dK+

∑
K

∫
∂K

(
δH

δρh
n · δ̂F

δuh
− δ̂H

δuh
· n δF
δρh

)
dΓ, (2.48a)

with element boundaries ∂K. Wide hats on the expressions in the boundary
integrals indicate numerical fluxes. We chose the following numerical fluxes

δ̂F

δuh
= (1− θ) δF

δuLh
+ θ

δF

δuRh
and

δ̂H

δuh
= (1− θ) δH

δuLh
+ θ

δH

δuRh
, (2.48b)

27



2.3. Discrete Hamiltonian formulation

where L and R indicate the traces from the left and right elements con-
nected to the faces, and 0 ≤ θ ≤ 1. We emphasise the equivalence of the
numerical fluxes used in (2.48) and in the FV discretisation for the case
with constant basis and test functions on each element.

We use numerical fluxes (2.48b) and rewrite the sum over element
boundaries into a sum over all faces. Together with (2.43), it yields the
following DGFEM discretisation for linear, compressible Hamiltonian dy-
namics

dF

dt
=
∑
K

∫
K

(
−∇h

δH

δρh
· δF
δuh

+
δH

δuh
· ∇h

δF

δρh
− 2Ω× δH

δuh
· δF
δuh

)
dK+

∑
e∈Γi

∫
e

(
δH

δρLh
− δH

δρRh

)
n ·
(

(1− θ) δF
δuLh

+ θ
δF

δuRh

)
+(

δF

δρRh
− δF

δρLh

)
n ·
(
δH

δuRh
θ +

δH

δuLh
(1− θ)

)
dΓ. (2.49)

Here n = nL is the exterior normal vector connected with element KL.
Technically speaking, periodic boundary conditions can be specified in

ghost cells (denoted with subscript R), where values of the variables exactly
coincide with the face-adjacent cell values (denoted with subscript Lp) at
the other side of the periodic boundary

δH

δUR
· n =

δH

δULp
· n and

δH

δρR
=

δH

δρLp
, (2.50)

with n the normal to the boundary face. Geometrically speaking, there
are of course only internal cells in a periodic domain. In the case of a
three-dimensional cuboid bounded by solid walls, the numerical fluxes on
both the test functions and the Hamiltonian derivatives must vanish, cf.
our specifications in (2.13). In terms of ghost cells, it implies that

(1− θ) δF
δuLh

+ θ
δF

δuRh
= 0 and (1− θ) δH

δuLh
+ θ

δH

δuRh
= 0 at ΓD.

(2.51)

We will use, or rather assume, shortly that boundary conditions for incom-
pressible flow should automatically satisfied by using Dirac’s theory, given
that those boundary conditions are satisfied for the discrete, compressible
Hamiltonian discretisation.

By construction, the bracket (2.49) remains skew-symmetric. Uncon-
ventional is that the numerical flux is also acting on the test functions
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δF/δuh. We refer to [109] for a proof that the bracket (2.49) can be trans-
formed to a classical, discontinuous Galerkin finite element weak formu-
lation with alternating fluxes, provided θ = 1/2 at boundary faces and
for constant material parameters. When material parameters are a func-
tion of space, then the Hamiltonian formulation with its division between
bracket and Hamiltonian becomes crucial. Not only the skew-symmetric or
alternating fluxes matter then but also the dual, Hamiltonian projection.
The DG discretisation with a polynomial approximation of order zero will
exactly coincide with our FV discretisation. Note that for θ = 1/2 the
well-known image boundary condition emerges from (2.51). We empha-
sise, though, that for θ 6= 1/2 our general condition (2.51) still applies, but
that it seems no longer quite equivalent to the standard, alternating flux
formulation applied directly to the PDEs.

Variables are expanded on each element K in terms of local basis func-
tions such that: uh = φβuβ and ρh = φβρβ. Both coefficients and test
functions require elemental superscripts, which we silently omit. Greek nu-
merals are used locally on each element K and we apply the summation
convention over repeated indices. Variational and function derivatives are
then related as follows

δF =
∑
K

∫
K

δF
δuh

δuh +
δF
δρh

δρhdK (2.52a)

=
∑
K

(∫
K

δF
δuh

φβdK
)
δuβ +

(∫
K

δF
δρh

φβdK
)
δρβ (2.52b)

=
∑
K

∂F

∂uβ
δuβ +

∂F

∂ρβ
δρβ. (2.52c)

Similarly, by starting from (2.52c) and using the relation

Mαβuβ =

∫
K
φαuhdK, (2.53)

with local mass matrix Mαβ = MK
αβ, one can derive

δF
δuh

= M−1
βγ

∂F

∂uβ
φγ and

δF
δρh

= M−1
βγ

∂F

∂ρβ
φγ . (2.54)

By substitution of (2.54) into (2.49), we immediately derive the desired

29



2.3. Discrete Hamiltonian formulation

form of the finite-dimensional Hamiltonian discretisation

dF

dt
=
∑
K

(
∂H

∂uβ

∂F

∂ρα
− ∂F

∂uβ

∂H

∂ρα

)
·EγµM

−1
βγM

−1
αµ − 2Ω× ∂H

∂uα
· ∂F
∂uβ

M−1
αβ

+
∑
e∈Γi

(1− θ)
(
∂H

∂ρLα

∂F

∂uLβ
− ∂F

∂ρLα

∂H

∂uLβ

)
·GLL

γµM
−L
αµ M

−L
βγ

+ θ

(
∂H

∂ρLα

∂F

∂uRβ
− ∂F

∂ρLα

∂H

∂uRβ

)
·GLR

γµM
−L
αµ M

−R
βγ

− (1− θ)
(
∂H

∂ρRα

∂F

∂uLβ
− ∂F

∂ρRα

∂H

∂uLβ

)
·GRL

γµM
−R
αµ M

−L
βγ

− θ
(
∂H

∂ρRα

∂F

∂uRβ
− ∂F

∂ρRα

∂H

∂uRβ

)
·GRR

γµ M
−R
αµ M

−R
βγ (2.55)

with elemental (vector) matrices Eγµ and GLR
γµ etc. These read

Eγµ =

∫
K
φγ∇hφµdK and GLR

γµ =

∫
e
nφLµφ

R
γ dΓ, (2.56)

with similar relations for other terms. Finally, after substitution of (2.54)
into Hamiltonian (2.43), it becomes

H =
1

2

∑
K

Mαβ (uα · uβ + ραρβ) . (2.57)

A global formulation is useful for the incompressible case. We therefore
introduce a reordering into global coefficients Ui = Ui(t) = (U, V,W )Ti and
Rk(t), instead of the elemental ones, in the finite element expansion of uh
and ρh with indices running over their respective, global ranges. It turns
out that the local matrices Mαβ and Eγµ in (2.55) and (2.57) readily extend
to global matrices Mij and Eij . These have a block structure in which each
elemental matrix fits in separation from the others. The contribution of the
numerical fluxes lead to coupling between the elements, which can be in-
corporated into a global matrix Gij . The latter is straightforwardly defined
computationally by a loop over the faces, and we will therefore not provide
an explicit expression. The resulting, global Hamiltonian formulation then
becomes

dF

dt
= [F,H]d ≡

(
∂H

∂Uj

∂F

∂Ri
− ∂F

∂Uj

∂H

∂Ri

)
·DIVklM

−1
ik M

−1
jl (2.58a)

− 2Ω× ∂H

∂Ui
· ∂F
∂Uj

M−1
ij
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with the divergence vector operator DIVkl ≡ Ekl −Gkl and global Hamil-
tonian

H =
1

2
Mij (Ui ·Uj +RiRj) . (2.58b)

The resulting equations of motion arising from (2.58) are

U̇j =−M−1
jk RlDIVkl − 2Ω×Uj (2.59a)

MklṘl =Uj ·DIVjk (2.59b)

with the dot denoting a time derivative.

Hamiltonian DGFEM discretisation for linearised
incompressible flow

In close analogy with the continuous case and the FV-case, Dirac’s the-
ory is applied to the Hamiltonian dynamics (2.58). The density expansion
coefficients are all restricted in every local element such that the result-
ing density in the element is zero. The following primary constraints are
imposed on the discrete density field

Dk = MklRl. (2.60)

Preservation of the constraints in time leads to the following consistency
relation

0 = Ḋk = [Dk, H]d + λl[Dk, Dl]d. (2.61)

Using (2.60) in the bracket (2.58a) shows that [Dk, Dl]d = 0. The La-
grange multipliers λl in (2.61) thus remain undetermined, but the consis-
tency requirement gives rise to secondary constraints Lk = [Dk, H]d = 0.
Analogous to the continuous and FV-case, the secondary constraint is the
discrete version of the divergence-free velocity field property (2.17). To wit

Lk = [Dk, H] ≡ DIVlk ·Ul, (2.62)

with the discrete divergence operator DIVlk. We start again with both
primary constraints and require these to remain preserved under the Hamil-
tonian dynamics. We obtain

0 =Ḋk = [Dk, H]d + µl[Dk, Ll]d, (2.63a)

0 =L̇k = [Lk, H]d + λl[Lk, Dl]d + µl[Lk, Ll]d. (2.63b)
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2.4. Time Integrator

Application of the primary constraint implies that Lk = [Dk, H] = 0 in
(2.63a). Hence,

µl[Dk, Ll] = µlDIVmlM
−1
jm ·DIVjk = 0. (2.64)

The matrix acting on µl is a discrete Laplacian. It is nonsingular, whence
µl = 0. Consequently, (2.63b) reduces to

0 = L̇k =[Lk, H]d + λl[Lk, Dl]d (2.65a)

=−DIVjk · 2Ω×Uj − λlDIVjkM
−1
jm ·DIVml, (2.65b)

which is the discrete equivalent of the Poisson equation in (2.28). Finally,
the resulting discrete, linear, incompressible Hamiltonian dynamics is given
by

dF

dt
= [F,H]inc ≡ −

∂F

∂Uj
·
(
2Ω× ∂H

∂Ui
M−1
ij + λlM

−1
jk DIVkl

)
(2.66a)

with energy function

H =
1

2
MijUi ·Uj . (2.66b)

The final system consists of the ordinary differential equations following
directly from (2.66) after using F = Uj , as follows

U̇j = −2Ω×Uj − λlM−1
jk DIVkl, (2.67)

combined with (2.65):

λlDIVjkM
−1
jm ·DIVml = −DIVjk · 2Ω×Uj . (2.68)

2.4 Time Integrator

We consider a symplectic time integrator for the time discretisation of
linear compressible (2.59) and incompressible (2.67) Hamiltonian dynam-
ics. Symplectic time integrators form the subclass of geometric integrators
which, by definition, are canonical transformations. The modified midpoint
time integrator was chosen amongst other symplectic schemes [44]. It is im-
plicit, which requires more computation, but that pays off in dealing with
the momentum and continuity equations in a rotating frame of reference.
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2.4.1 Linear, compressible flow

Applying the modified midpoint scheme to the discrete compressible
Hamiltonian dynamics (2.58) or (2.59), one gets

Un+1
j −Un

j

∆t
= −M−1

jk

(Rn+1
l +Rnl )

2
DIVkl −Ω× (Un+1

j + Un
j ) (2.69a)

Mkl
(Rn+1

l −Rnl )

∆t
=

Un+1
j + Un

j

2
·DIVjk. (2.69b)

Proposition 1. The numerical scheme for linear, compressible fluid flow
given by (2.69) is exactly energy conserving, such that Mij(U

n+1
i ·Un+1

j +

Rn+1
i Rn+1

j ) = Mij(U
n
i ·Un

j +Rni R
n
j ).

Proof. Multiply equations (2.69) with MijU
n+1
i , Rn+1

k and MijU
n
i , Rnk .

Thereafter, add them up. After some manipulation, the Hamiltonian on
the (n + 1)-th time level can be shown to equal the Hamiltonian on the
n-th level.

2.4.2 Incompressible flow

The midpoint time integrator is also applied to the incompressible dis-
crete Hamiltonian dynamics (2.66) or (2.67), giving

(Un+1
j −Un

j )

∆t
= −Ω× (Un+1

j + Un
j )− λn+1

l M−1
jk DIVkl (2.70a)

λn+1
l DIVjkM

−1
jm ·DIVml = −DIVjk ·Ω× (Un+1

j + Un
j ). (2.70b)

Proposition 2. The numerical scheme for linear, incompressible fluid flow
given by (2.70) exactly conserves energy and the discrete zero-divergence
property in time, such that DIVjm ·Un+1

j = 0 given that DIVjm ·U0
j = 0

and MijU
n+1
i ·Un+1

j = MijU
n
i ·Un

j .

Proof. Firstly, we present the proof for the conservation of the discrete
zero-divergence, under the assumption that the current velocity of the nth–
time level is discretely divergence free, i.e., Lm = DIVjm · Un

j = 0. We
apply the discrete divergence operator on both sides of (2.70a) and use that
the present velocity is divergence free, to obtain

DIVjm ·Un+1
j /∆t =−DIVjm ·Ω× (Un+1

j + Un
j )

−DIVjm · λn+1
l M−1

jk DIVkl. (2.71)
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2.4. Time Integrator

The right hand side of (2.71) exactly coincides with (2.70b) and therefore
DIVjm ·Un+1

j = 0.
Secondly, energy conservation means that the discrete Hamiltonian en-

ergy functional (2.66b) stays unchanged in time. Multiplication of (2.70a)
with MijU

n+1
i and MijU

n
i , followed by summation of both equations yields

Mij

(Un+1
i ·Un+1

j −Un
i ·Un

j )

∆t
=− λn+1

l DIVil · (Un+1
i + Un

i ) = 0, (2.72)

since the terms involving rotational effects cancel and in the last step we
use that present and future time velocities are divergence free, as shown
in the first part of this proof. Hence, the difference of the energy at the
(n+ 1)th and nth level is zero.

2.4.3 Initial conditions

As proven above, the discontinuous Galerkin discretisation for linearised
incompressible fluid flow conserves energy and is divergence free at the dis-
crete level. The proofs require a discrete, divergence-free initial condition,
i.e., DIVjm · U0

j = 0. This condition is not guaranteed automatically,
since the projection of the initial, divergence-free velocity field on the cho-
sen discontinuous Galerkin finite element space only satisfies discrete zero-
divergence up to the order of accuracy. We therefore require a preprocess-
ing step on this projected velocity U. We are looking for a U∗ for which
DIVjm ·U∗j = 0 exactly and ||U∗ −U|| is minimal. Note that the matrix
DIVjm is not square. Hereafter, we denote the associated, global matrix
by DIV and the vector of velocity unknowns as U (so without indices). Ba-
sically, the latter problem transforms into a well-known problem in vector
calculus: find a projection of the vector U on the space A: the null-space
of discrete divergence matrix operator DIV , defined as

A = {Q ∈ R3Ndof : DIV Q = 0} (2.73)

with Ndof the degrees of freedom per velocity component (assuming them
to be equal for simplicity).

From linear algebra [38, 37], we obtain that the closest vector from the
A-space will be the projection of vector U on the space, which is

U∗ ≡ projAU = U + U⊥. (2.74)

Applying the DIV –operator on (2.74), we find

0 = DIV U∗ = DIV U + DIV U⊥, (2.75)
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Figure 2.1: Projection of vector U on the null-space of matrix DIV .

which results in

DIV U⊥ = −DIV U. (2.76)

The latter equation is solved for U⊥ via a least-square approximation [42]
up to machine precision. Hence, the projected velocity is preprocessed
using (2.74), and the resulting velocity field has become exactly discrete
divergence free, as required.

2.4.4 Other properties of the algebraic system

A direct DGFEM discretisation of the incompressible Navier-Stokes
equations (or the Euler equations as special case) generally requires the
inf-sup condition to be satisfied to attain numerical stability [39, 71]. In
order to get a stable pressure approximation, two different strategies are
often pursued: either a pressure stabilisation term is used or the approxi-
mation spaces for velocity and pressure are chosen (differently) such that
an inf-sup compatibility condition is fulfilled. Nonetheless, our numeri-
cal discretisation for linear, incompressible flow does not suffer from those
drawbacks. The exact preservation of the Hamiltonian dynamics as well as
the constraints makes the system unconditionally stable.

Furthermore, the three-dimensionality of the problem results in a large
algebraic system, which we represent using the sparse matrix structures
available in PETSc [10, 91]. Figure 2.2 shows the sparsity of a matrix,
needed to determine Un+1

j and λn+1
l in the discretisation for incompressible

flow (2.69). We use a linear, iterative solver to converge to the desired
tolerance. To improve the convergence rate of the iterative solver ILU
preconditioners were used with controlled memory usage of the resulting
algebraic system.
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2.4. Time Integrator

Figure 2.2: A structure of the resulting square sparse matrix with more
than 108 non-zero elements and Ω1 = Ω2 = 0, and Ω3 = 1. Λ denotes the
vector of unknown Lagrange multipliers.
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2.5 Tests of numerical scheme

Discretisations for linear compressible and incompressible flows were
implemented for discontinuous Galerkin methods in the hpGEM C++ soft-
ware framework [80]. The developed applications are consequently highly
object-oriented, easy to maintain and extend. Although the tests consid-
ered concern cuboids, the implementation can cope with general geometries
and meshes. The three-dimensionality of the problem poses, however, sig-
nificant requirements on speed and memory use. The sparse matrix data
structures available in the PETSc library are therefore used. An ILU pre-
conditioner is applied to the linear algebraic system before applying a GM-
RES linear solver [10, 91]. The number of iterations varies for the different
test cases and strongly depends on the dimensions of the algebraic system,
e.g., the grid size and the amount of basis functions. In the case of quadratic
polynomial basis functions with a grid of 64 × 64 × 64 elements, which is
the computationally most demanding case, one needs approximately forty
GMRES iterations to reach the tolerance 10−14 in solving the algebraic
equation for incompressible flow.

Although the main goal is to simulate inertial waves in a rectangu-
lar box, several extra test cases were performed to verify the approaches
and techniques used. Two text cases (periodic waves and waves in a do-
main with no-slip boundaries) for the compressible fluid were implemented,
tested and validated by comparison with an available exact solutions. Ad-
ditionally, an attempt has been made to attain energy attractors in the
domain with a geometrical asymmetry. In all tests presented, θ = 1/2 was
used in the numerical flux. Other values of 0 ≤ θ ≤ 1 were also used for
various test cases with similar results.

2.5.1 Compressible harmonic waves in a periodic
domain

Consider linear, compressible fluid flow with zero rotation Ω = (0, 0, 0)
in a rectangular triple periodic domain D = [0, 1]3. The following expres-
sions satisfy the linear Euler equations

u = A1 cos(2kx(t− x)), (2.77a)

v = A2 cos(2ky(t− y)), (2.77b)

w = A3 cos(2kz(t− z)), (2.77c)

ρ = A1 cos(2kx(t− x)) +A2 cos(2ky(t− y)) +A3 cos 2kz(t− z)). (2.77d)
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2.5. Tests of numerical scheme

Each component of the velocity vector is a traveling wave in the direction
of the corresponding axes. The numerical discretisation is initialised with
(2.77) at t = 0, kx = ky = kz = 2π and A1 = A2 = A3 = 1. Numerical and
exact solutions were compared during several periods. Figure 2.3 presents
the numerical density profile during one time period of the traveling waves.
Discrete energy is conserved up to machine precision even after one hundred
periods. The results of a convergence analysis, presented in Table 2.1, show
that the numerical scheme is first, second and third order accurate in space
for, respectively constant, linear and quadratic polynomial approximations.

Table 2.1: Convergence of the error for compressible traveling waves in a
three-dimensional periodic domain. Due to symmetry all velocity compo-
nents have the same error.

p = 0 p = 1 p = 2
Grid l2-error order l2-error order l2-error order
4x4x4 u 1.011e+0 – 4.3024E-1 – 1.8532E-2 –

ρ 1.751e+0 – 7.4520E-1 – 3.2098E-2 –
8x8x8 u 8.249E-1 0.3 1.3087E-1 1.7 3.0944E-3 2.6

ρ 1.428e+0 0.3 2.2667E-1 1.7 5.3598E-3 2.6
16x16x16 u 2.405E-1 1.8 2.9192E-2 2.1 3.4723E-4 3.2

ρ 4.166E-1 1.8 5.0554E-2 2.1 6.0142E-4 3.2
32x32x32 u 7.193E-2 1.7 5.0432E-3 2.5 2.9366E-5 3.6

ρ 1.245E-1 1.7 8.7321E-3 2.5 5.0864E-5 3.6
64x64x64 u 2.638E-2 1.5 1.0813E-3 2.2 1.8266E-6 4.0

ρ 4.579E-2 1.4 2.3901E-3 1.8 3.1638E-6 4.0

2.5.2 Compressible waves with slip-flow bound-
ary conditions

Next, linear, acoustic fluid flow is considered in domain D, but now
slip-flow boundary conditions are used with zero normal component of the
velocity field at domain boundaries. Boundary conditions are effectively
implemented with the help of ghost cells, where the values of velocity and
density fields are specified to satisfy the boundary conditions. One can
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(a) Density profile at t=0 (b) Density profile at t=T/4

(c) Density profile at t=T/2 (d) Density profile at t=3T/4

Figure 2.3: Plots of the density field computed with the discretised com-
pressible Hamiltonian formulation. A 32 x 32 x 32 grid with time step
∆t = T/20, where T is the time period of the harmonic waves, was used in
a periodic domain.
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check that

u = −A1 sin(2kxx) cos(ωt), (2.78a)

v = −A2 sin(2kyy) cos(ωt), (2.78b)

w = −A3 sin(2kzz) cos(ωt), (2.78c)

ρ = A1 sin(2kxx) cos(ωt) +A2 sin(2kyy) cos(ωt) +A3 sin(2kzz) cos(ωt).
(2.78d)

exactly satisfy the linearised compressible Euler equations with slip-flow
boundary conditions. The numerical scheme is initialised using (2.78) at
t = 0, where ω = kx = ky = kz = 2π and A1 = A2 = A3 = 1. Figure 2.4
shows the numerical density profile during a full time period. Discrete
energy again is conserved up to machine precision, after one hundred wave
periods. A convergence analysis is given in Table 2.2.

Table 2.2: Convergence of the error for compressible standing waves in a
cuboid with solid walls. Due to symmetry all velocity components have the
same error.

p = 0 p = 1 p = 2
Grid l2-error order l2-error order l2-error order
4x4x4 u 7.909E-1 – 1.6871E-1 – 7.6351E-3 –

ρ 2.391e+0 – 6.8551E-1 – 2.9242E-2 –
8x8x8 u 5.012E-1 0.7 6.8455E-2 1.3 3.2262E-4 4.5

ρ 1.134e+0 0.6 1.9319E-1 1.8 5.3301E-3 2.5
16x16x16 u 8.794E-2 2.5 6.2392E-3 3.4 4.2721E-5 3.0

ρ 3.877E-1 1.4 4.9391E-2 2.0 5.9395E-4 3.2
32x32x32 u 4.013E-2 1.1 1.0702E-3 2.5 5.6751E-6 4.6

ρ 1.033E-1 1.9 8.5331E-3 2.5 5.0721E-5 3.5
64x64x64 u 2.003E-2 1.0 2.5982E-4 2.0 7.0557E-7 3.0

ρ 2.973E-2 1.8 2.3531E-3 1.9 5.1638E-6 3.1

2.5.3 Incompressible waves in a periodic domain

The compressible test cases were mainly interesting as a quality assur-
ance step for linearised incompressible fluid flow, which we consider next.
An exact solution was found for the linear, incompressible, rotational Euler
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(a) Density profile at t=0 (b) Density profile at t=T/4

(c) Density profile at t=T/2 (d) Density profile at t=3T/4

Figure 2.4: The results are obtained on a 32 x 32 x 32 grid with ∆t = T/20,
where the T is the time period of the standing, compressible waves in a
closed cuboid.
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equations (2.28) with periodic boundary conditions

u =
1

2π

[√
3 cos

(
2π(x+ y + z) +

√
3

3
t

)
+ 3 sin

(
2π(x+ y + z) +

√
3

3
t

)]
,

(2.79a)

v =
1

2π

[√
3 cos

(
2π(x+ y + z) +

√
3

3
t

)
− 3 sin

(
2π(x+ y + z) +

√
3

3
t

)]
,

(2.79b)

w = − 1

π

√
3 cos

(
2π(x+ y + z) +

√
3

3
t

)
, (2.79c)

P =
1

2π2
cos

(
2π(x+ y + z) +

√
3

3
t

)
, (2.79d)

where the rotation vector is Ω = (0, 0, 1) and P is the pressure. This exact
solution is used for the initialisation in a periodic domain D = [0, 1]3. As
was already discussed, the Lagrange multiplier λ = P plays the role of the
pressure in our incompressible Hamiltonian discretisation. The numerical
velocity and pressure fields are compared against the exact solution during
several wave periods. Figure 2.5 gives an example of the numerical solution
during one period. Figure 2.6 shows that conservation of energy and dis-
crete zero-divergence in time are maintained up to machine precision. To
ensure that the velocity field has zero-divergence, one has to initialise the
numerical scheme with an exact discrete divergence-free velocity field, see
Section 4.3. Thus, adjustment of the initial projection of the velocity field
onto the discontinuous Galerkin basis is required to satisfy this condition
exactly (up to machine precision). The energy change observed at t = 0
in Figure 2.6, originates from this projection, and is within the order of
accuracy of the numerical approximation. Table 2.3 presents the rate of
convergence of the Hamiltonian DGFEM discretisation.

2.5.4 Poincaré waves in a channel

Poincaré waves in a channel for incompressible flow are considered next.
The channel is periodic in the y-direction and closed with walls in the x-
and z- directions. The angular rotation vector is equal to Ω = (0, 0, 1). An
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(a) Pressure profile at t=0 (b) Pressure profile at t=T/4

(c) Pressure profile at t=T/2 (d) Pressure profile at t=3T/4

Figure 2.5: Incompressible waves in periodic domain. The results concern
an incompressible Hamiltonian discretisation on a 32 × 32 × 32 grid with
∆t = T/20 and period T . The implementation concerns a quadratic poly-
nomial approximation on local elements.
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Table 2.3: Convergence of the error in the Hamiltonian DGFEM discreti-
sation for incompressible periodic waves in a cuboid. Due to symmetry all
velocity components have the same error.

p = 0 p = 1 p = 2
Grid l2-error order l2-error order l2-error order
4x4x4 u 2.665E-1 – 1.6340E-1 – 7.2122E-3 –

p 2.872E-2 – 1.3876E-2 – 3.9242E-3 –
8x8x8 u 1.477E-1 0.9 5.3412E-2 1.6 9.6455E-4 2.9

p 1.411E-2 1.0 4.6244E-3 1.6 6.0758E-4 2.7
16x16x16 u 7.587E-2 1.0 1.8100E-2 1.6 1.2843E-4 2.9

p 7.141E-3 1.0 1.4475E-3 1.7 1.0251E-4 2.6
32x32x32 u 3.822E-2 1.0 5.7218E-3 1.7 1.6820E-5 2.9

p 3.737E-3 0.9 4.5473E-4 1.7 1.443E-5 2.8
64x64x64 u 1.919E-2 1.0 1.6772E-3 1.8 2.2143E-6 2.9

p 2.169E-3 0.8 1.3692E-4 1.7 2.0682E-6 2.8

(a) Energy function. (b) Discrete divergence.

Figure 2.6: Energy and L∞-norm of discrete divergence in the Hamiltonian
DGFEM discretisation during 100 periods of periodic inertial waves in a
cuboid.
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exact solution for Poincaré waves in D = [0, 1]3 reads

u = − kσ3

1− σ2

(
1 +

l2

(σk)2

)
sin(kx) sin(ly − σt) cos (2πz) , (2.80a)

v =

(
−lσ cos(kx) +

1

k
sin(kx)

)
cos(ly − σt) cos (2πz) , (2.80b)

w = σ

(
cos(kx) +

l

σk
sin(kx)

)
sin(ly − σt) sin (2πz) , (2.80c)

P = −σ2

(
cos(kx) +

l

σk
sin(kx)

)
cos(ly − σt) cos (2πz) , (2.80d)

where k = 2π, l = 2π, and frequency σ = 1/
√
k2 + l2 + 1. At the solid

walls in the x- and z-directions we need to satisfy geostrophic balance at
the boundaries, due to the rotation of the domain. In Figures 2.7 and 2.8
we present a numerical solution (velocity vector and scalar pressure fields)
during one period. Figure 2.9 demonstrates the discrete conservation of
the energy and the zero-divergence of the discrete velocity. Convergence
results are given in Table 2.4, which show that the convergence rates are
close to k + 1, with k the polynomial order.

2.5.5 Inertial waves

Next, we consider linear, incompressible, rotational fluid flow in a rect-
angular box with solid wall boundary conditions on all sides. Such kind of
flow will lead to inertial waves in the interior of the domain, e.g., [62]. An
extensive discussion of these waves as well as an improved semi-analytical
solution of this problem can be found in [78]. The semi-analytical solution
is used as a test solution for the verification of our incompressible Hamil-
tonian discretisation with slip-flow boundary conditions. Due to the slow
convergence of the semi-analytical solutions, this comparison can, however,
only be done for restricted mesh sizes.

Since the exact solution is unknown, we use solutions on a sequence of
uniform meshes to obtain an estimate for the rate of convergence, which is
called Richardson extrapolation (e.g., [103]). We take a uniformly refined
sequence of meshes h4 = href < h3 < h2 < h1, where the mesh-size hi
(i = 1, 2, 3.4) is doubled for each finer mesh, and calculate the convergence
rate s by numerically solving the following equation

hs1 − hs2
hs2 − hs3

=
||Uref −Uh1

|| − ||Uref −Uh2
||

||Uref −Uh2
|| − ||Uref −Uh3

||
. (2.81)
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Table 2.4: Convergence of the error in the Hamiltonian DGFEM discreti-
sation for incompressible Poincaré waves in a channel.

p = 0 p = 1 p = 2
Grid l2-error order l2-error order l2-error order
4x4x4 u 7.834e+0 – 1.3599e+0 – 2.9126E-1 –

v 7.492e+0 – 1.4793e+0 – 2.5108E-1 –
w 8.935e+0 – 1.6662e+0 – 2.4933E-1 –
p 5.819e+0 – 4.7072e+0 – 2.1281E-1 –

8x8x8 u 3.889e+0 1.0 5.7839E-1 1.3 2.8640E-2 3.3
v 3.802e+0 1.0 6.1504E-1 1.3 2.0699E-2 3.6
w 4.042e+0 1.1 6.7238E-1 1.3 2.0075E-2 3.6
p 2.290e+0 1.3 9.1548E-1 2.3 2.9025E-2 2.9

16x16x16 u 2.192e+0 0.8 1.9858E-1 1.5 3.1792E-3 3.1
v 2.229e+0 0.8 2.4017E-1 1.4 2.3963E-3 3.1
w 2.015e+0 1.0 2.4244E-1 1.5 2.2733E-3 3.1
p 1.179e+0 1.0 3.2671E-1 1.5 3.2460E-3 3.1

32x32x32 u 1.136e+0 0.9 6.3126E-2 1.6 4.1469E-4 2.9
v 1.169e+0 0.9 8.4394E-2 1.5 3.2670E-4 2.9
w 1.065e+0 0.9 8.5931E-2 1.5 3.1967E-4 2.8
p 5.932E-1 1.0 1.0317E-1 1.7 4.3572E-4 2.9

64x64x64 u 5.726E-1 1.0 1.8031E-2 1.8 5.5452E-5 2.9
v 5.899E-1 1.0 2.4461E-2 1.8 4.4548E-5 2.9
w 5.258E-1 1.0 2.3687E-2 1.9 4.3963E-5 2.9
p 2.961E-1 1.0 3.1627E-2 1.7 4.3572E-5 2.9
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(a) u component at t=0 (b) v component at t=0

(c) u component at t=T/4 (d) v component at t=T/4

(e) u component at t=T/2 (f) v component at t=T/2

(g) u component at t=3T/4 (h) v component at t=3T/4

Figure 2.7: Velocity components u and v for Poincaré waves are computed.
Numerical results concern the incompressible Hamiltonian DGFEM dis-
cretisation on a 32×32×32 grid with ∆t = T/20. We consider a quadratic
polynomial approximation in local elements.
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(a) w component at t=0 (b) p scalar pressure at t=0

(c) w component at t=T/4 (d) p scalar pressure at t=T/4

(e) w component at t=T/2 (f) p scalar pressure at t=T/2

(g) w component at t=3T/4 (h) p scalar pressure at t=3T/4

Figure 2.8: Vertical velocity component w and linearised scalar pressure
fields during one period of a Poincaré-wave simulation. For details, see the
caption of Figure 2.7.
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(a) Energy function. (b) Discrete divergence.

Figure 2.9: Energy and L∞-norm of discrete divergence-free velocity field
during 100 periods in Hamiltonian DGFEM computations of a Poincaré-
wave.

The numerical velocity field and the mesh size for the different meshes are
given with subscript notation, where (·)ref denotes the finest mesh. By
taking the sequence of meshes 64 × 64 × 64, 32 × 32 × 32, 16 × 16 × 16,
8×8×8, we numerically solve (2.81). The convergence rate in the L∞-norm
is roughly as expected, s ≈ 2.89, for the implementation with quadratic
polynomials.

The extensive tests reported above convince us that the presented nu-
merical scheme is actually more accurate than the slowly converging semi-
analytical solutions. In Figures 2.10 and 2.11 we present all components of
the numerical velocity vector and pressure fields produced by a simulation of
incompressible fluid flow initialised with one of the eigenmodes of the semi-
analytical solution. The domain is a rectangular box D = [0, 2π]× [0, π]2.
Figure 2.12 shows conservation of energy and discrete zero-divergence.

2.5.6 Inertial waves in a ‘tilted’ box

Finally, we attempt to observe wave focussing in our numerical wave
tank, to demonstrate the capabilities of our novel numerical scheme. In
the previous cases, the walls are either parallel or perpendicular to the
rotation vector, possessing a “local reflectional symmetry”. Thus no mode
breaking can be observed. However, a slight tilt in one of the walls results
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(a) u component at t=0 (b) v component at t=0

(c) u component at t=T/4 (d) v component at t=T/4

(e) u component at t=T/2 (f) v component at t=T/2

(g) u component at t=3T/4 (h) v component at t=3T/4

Figure 2.10: Horizontal velocity components u and v of an inertial wave
with eigenfrequency σ = 0.477. The rotation vector is aligned with the
z-direction. Quadratic basis functions are used on 32 x 16 x 16 mesh with
time step ∆t = T/20.

50



Hamiltonian DGFEM for linear Euler equations: inertial waves

(a) w component at t=0 (b) p scalar pressure at t=0

(c) w component at t=T/4 (d) p scalar pressure at t=T/4

(e) w component at t=T/2 (f) p scalar pressure at t=T/2

(g) w component at t=3T/4 (h) p scalar pressure at t=3T/4

Figure 2.11: Vertical component w of velocity and scalar pressure p for the
inertial wave simulation. For details, see the caption of Figure 2.10.
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(a) Energy function. (b) Discrete divergence.

Figure 2.12: Energy and L∞-norm of discrete divergence-free velocity in
Hamiltonian DGFEM discretisation during 100 time periods of inertial
waves in a cuboid.

in symmetry breaking and hence in wave focussing and defocussing, such
that, due to dominance of the former, wave attractors may appear [69].
Here we break the “local reflectional symmetry” by a small change in the
background angular velocity vector.

The domain is chosen to be a prolonged three-dimensional box with
D = [0, 4π]× [0, π]2. The simulation is initialised with a particular eigenfre-
quency (σ ≈ 0.6946) from the semi-analytical solution for a domain with a
constant background rotation (Ω∗ = (0, 0, 1)) aligned along the z-direction
available from [69, 78]. Next we introduce a small tilt in the angular veloc-
ity such that Ω = (0, 0.1, 1). After some time, the initial mode completely
changes its structure and its frequency, due to the ‘tilt’; see the plots of
the ‘tilted’ and original flows in Figures 2.13 and 2.14. The distribution
of the energy in the ‘tilted’ rectangular domain is given in Figure 2.15. In
the vertical cross-section of the energy distribution plot (see Figure 2.15),
a structure reminiscent of a wave attractor can be discerned. This rectan-
gular region with a locally increased energy density is most evident in the
middle of the tank, whereas in the rest of the tank there is a lower energy
distribution. Furthermore, a similar rectangular structure can be seen in
the pressure field, whereas the pressure field of the original ‘untilted’ mode
has a regular structure (see Figures 2.13 and 2.14). The numerical solu-
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tion is expanded in terms of quadratic polynomials defined on a mesh with
160× 40× 40 elements. In the current implementation the size of the mesh
is constrained by the available random-access memory. The latter obstacle
can be overcome by applying local hp-refinement near the zones with high
wave amplitude and implementing the numerical algorithm in a parallel
environment.

2.6 Concluding remarks

We have derived a DGFEM discretisation for Hamiltonian dynamics of
linear, rotating incompressible fluid flow. The discretisation was obtained
by applying Dirac’s constrained Hamiltonian theory on a DGFEM formu-
lation of compressible fluid flows. As an interim result a discretisation
of Hamiltonian dynamics of compressible flow was derived, implemented
and tested against exact solutions. The use of Dirac’s theory is a novel
approach to derive a Hamiltonian discontinuous Galerkin discretisation for
incompressible flow using a related discretisation for compressible flow. The
resulting system, as a consequence of the exact preservation of the con-
straints, does not require a stabilisation common to some direct DGFEM
discretisations of incompressible fluid flows.

It was a challenge to derive and implement the boundary conditions for
a discretisation preserving the Hamiltonian structure in a rotating frame,
due to the mandatory satisfaction of geostrophic balance for the flow along
fixed walls. Moreover, for exact preservation of energy and zero-divergence,
the presented numerical scheme requires the projection of the initial velocity
profile to be exactly divergence free at the discrete level. A preprocessing
step was thus introduced to ensure that the initial velocity field in the
DGFEM discretisation is divergence free up to machine precision.

Several tests of inertial waves in rotating domains were presented. The
simulation of Poincaré inertial waves in a channel assessed the proper im-
plementation of no-normal flow boundary conditions in rotating domains.
Next, an inertial-wave simulation in a cuboid with fixed solid walls showed
agreement up to 10−2 with slowly converging semi-analytical solutions
available from [62]. Richardson extrapolation with sequencing of meshes
proved that our numerical solution is more accurate: the semi-analytical
solutions available from [62] or [78] do either not satisfy the Euler equations
or the solid-wall boundary conditions exactly. A DGFEM allows relatively
easy hp-refinement of the system. Global p-refinement was already used
in all presented numerical test cases and it appears that the quadratic
polynomial approximation in the local elements provides sufficient order of
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(a) u component (b) u component of exact mode

(c) v component (d) v component of exact mode

(e) w component (f) w component of exact mode

(g) p pressure (h) p pressure of exact mode

Figure 2.13: All components of the velocity field and the pressure field are
given at time t=56.4. The first column concerns the ‘tilted’ simulation and
the second column is the exact ‘untilted’ semi-analytical solution.
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(a) u component (b) u component of the exact mode

(c) v component (d) v component of the exact mode

(e) w component (f) w component of the exact mode

(g) p component (h) p pressure of the exact mode

Figure 2.14: Vertical cross-sections of the fields given in Figure 2.13 in the
middle of the tank.
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(a) Three-dimensional energy plot. (b) Vertical cross-section in the middle.

Figure 2.15: The distribution of the numerical energy in the ‘tilted’ simu-
lation at time t=56.4. In (b), we outlined the tentative attractor.

accuracy for capturing the phenomena of inertial waves in rotating domains.
Moreover, a simulation of inertial waves in a rotating domain with a

small change in the direction and magnitude of the background angular
velocity revealed a structure reminiscent of a wave attractor, due to the
violation of the “local reflectional symmetry”. To capture sufficient details
of wave attractors, it is useful to introduce hp-refinement of the domain near
the zones of attraction. This is one of the nice features of a DG scheme and
will be addressed in future research. It will also allow more detailed studies
of the wave focussing and defocussing in a container deprived of “local
reflectional symmetry”. Additional work will include the incorporation of
a free surface in the presented numerical scheme for incompressible fluid
flows.
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2.7 Appendix

2.7.1 Constrained Hamiltonian continuum dynam-
ics

The first calculation concerns the derivation from (2.19a) to (2.20)

0 ={F [ρ],H}+

∫
D
λ∆(x′){F [ρ],∆(x′)}dx′ (2.82)

=−
∫
D

δF
δρ
∇ · (ρ0u) dx−

∫∫
D,D′

λ∆(x)
δF

δρ(x′)
∇′ · δ∇ · u(x)

δu(x′)
dx dx′.

(2.83)

The last term in (2.83) can be reworked to

−
∫∫

D,D′
λ∆(x)

δF
δρ(x′)

∇′ · δ∇ · u(x)

δu(x′)
dx dx′

=

∫∫
D,D′

λ∆(x)∇′ δF
δρ(x′)

· δ∇ · u(x)

δu(x′)
dx dx′

−
∫
D

∫
∂D′

λ∆(x)
δF

δρ(x′)
n̂′ · δ∇ · u(x)

δu(x′)
dS′dx

= −
∫
D
∇λ∆ · ∇

δF
δρ

dx +

∫
∂D

∫
D′
λ∆(x)∇′ δF

δρ(x′)
n̂ · δu(x)

δu(x′)
dS dx′

=

∫
D

δF
δρ
∇2λ∆ dx−

∫
∂D

δF
δρ
∇λ∆ · n̂dS, (2.84)

in which the first boundary term emerging is zero, and similarly the second
boundary term emerging is zero, because

n′i∂j

(
δuj(x)

δui(x′)

)
= δij∂i

(
n′i
δui(x

′)

δui(x)

)
= 0, (2.85)

since δui(x)/δui(x
′) = δui(x

′)/δui(x) = δ(x−x′), which follows by analysing
δui(x) and δui(x

′) as functionals, and niδui = δ(niui) = 0 at ∂D. The in-
dex i denotes the velocity component and summation over repeated indices
is understood. Recombining the above yields the result stated in the main
text

0 =

∫
D

δF
δρ

(
−∇ · (ρ0u) +∇2λ∆

)
dx−

∫
∂D

δF
δρ

n̂ · ∇λ∆dS. (2.86)
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Recall that the secondary constraint is ∇·(ρ0u) = ρ0∇·u = 0. The solution
of (2.86) is therefore

λ∆ = constant. (2.87)

The second derivation concerns the step from (2.19b) to (2.23). From
(2.22), it follows that

δF [∆]

δu
= −∇δF [∆]

δ∆
. (2.88)

Detailed analysis of (2.19b) entails

0 = {F [∆],H}+

∫
D
λρ(x

′){F [∆], ρ(x′)}dx′

+

∫
D
λ∆(x′){F [∆],∆(x′)}dx′ (2.89)

=

∫
D

2Ω× u · ∇δF
δ∆

dx +

∫∫
D,D′

λρ(x)∇′ ·
(
δF [∆]

δu(x′)

)
δρ(x)

δρ(x′)
dx dx′

+

∫∫
D,D′

λ∆(x)
2Ω

ρ0
× δF [∆]

δu(x′)
· δ∇ · u(x)

δu(x′)
dx dx′. (2.90)

The third term in (2.90) can be shown to be zero as follows∫∫
D,D′

λ∆(x)
2Ω

ρ0
× δF [∆]

δu(x′)
· δ∇ · u(x)

δu(x′)
dx dx′

= −
∫∫

D,D′
∇λ∆(x) · 2Ω

ρ0
× δF [∆]

δu(x′)
· δu(x)

δu(x′)
dx dx′

+

∫
D′

∫
∂D

λ∆(x)
2Ω

ρ0
× δF [∆]

δu(x′
) · δ (n̂ · u(x))

δu(x′)
dS dx′

= 0, (2.91)

since λ∆ = cst (cf. (2.87)) and by using (2.85).
The second term in (2.90) can be reworked as follows∫∫

D,D′
λρ(x)∇′ ·

(
δF [∆]

δu(x′)

)
δρ(x)

δρ(x′)
dx dx′

=

∫
D
λρ∇ ·

(
δF [∆]

δu

)
dx

=

∫
D
∇λρ · ∇

(
δF [∆]

δ∆

)
dx−

∫
∂D

λρn̂ · ∇
(
δF [∆]

δ∆

)
dS

= −
∫
D
∇2λρ ·

δF [∆]

δ∆
dx +

∫
∂D
∇λρ · n̂

δF [∆]

δ∆
dS. (2.92)
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The second last boundary term n̂ · ∇(δF/δ∆) in (2.92) is zero because it
is imposed as extra gauge or boundary condition, cf. an earlier remark.

When we combine (2.92) and (2.90), the final result (2.23) in the main
text is reached

0 =−
∫
D

δF
δ∆

(
∇2λρ +∇ · (2Ω× u)

)
dx +

∫
∂D

δF
δ∆

n̂ ·
(
∇λρ + 2Ω× u

)
dS.

(2.93)
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Chapter 3

New semi-analytical solution
for inertial waves in a
rectangular parallelepiped

A study of inertial gyroscopic waves in a rotating homogeneous fluid
is undertaken both theoretically and numerically. A novel approach
is presented to construct a semi-analytical solution of a linear three-
dimensional fluid flow in a rotating rectangular parallelepiped bounded
by solid walls. The three-dimensional solution is expanded in verti-
cal modes to reduce the dynamics to the horizontal plane. On this
horizontal plane the two dimensional solution is constructed via su-
perposition of ’inertial’ analogs of surface Poincaré and Kelvin waves
reflecting from the walls. The infinite sum of inertial Poincaré waves
has to cancel the normal flow of two inertial Kelvin waves near the
boundaries. The wave system corresponding to every vertical mode
results in an eigenvalue problem. Corresponding computations for
rotationally modified surface gravity waves are in agreement with
numerical values obtained by Taylor (1921), Rao (1966) and also, for
inertial waves, by Maas (2003) upon truncation of an infinite matrix.
The present approach enhances the currently available, structurally
concise modal solution introduced by Maas (2003). In contrast to
Maas’ approach, our solution does not have any convergence issues
in the interior and does not suffer from Gibbs phenomenon at the
boundaries.

Additionally, an alternative finite element method is used to contrast
these two semi-analytical solutions with a purely numerical one. The
main differences are discussed for a particular example and one eigen-
frequency.



3.1. Introduction

3.1 Introduction

Fluid phenomena on Earth involve rotation to a greater or lesser ex-
tent. There are flows in which rotation is an absolutely essential factor.
Waves that are appearing in a closed rotating container filled with a homo-
geneous fluid became a subject of interest to the scientific community at
the end of the 19th and beginning of the 20th century. Taylor [101] derived
and presented the first complete linear solutions (valid for any angular fre-
quency) for free surface oscillations in a rotating rectangular parallelepiped.
Before Taylor, Rayleigh [87] discussed the problem of the free tidal oscilla-
tions of a rectangular sea of uniform depth, when the vertical component
of the Earth’s rotation period is large compared with the periods of the
oscillations. Later, the subject was studied by Proudman [84, 85], who also
corrected some inaccuracies and errors in Rayleigh’s works. A large amount
of research has been focused on rotationally modified surface gravity waves
as a major representative of the low-frequency waves in a homogeneous ro-
tating fluid. In oceanography these are referred to as Poincaré and Kelvin
waves, depending on whether the waves display a strictly sinusoidal or par-
tially exponential spatial dependence (e.g.,[55]). However, there is a class
of inertial (gyroscopic) waves that are possible within the interior of homo-
geneous rotating fluids. Unlike the surface gravity waves, they have their
maximum displacement in the interior of the domain, vanish at the free
or solid surface, and are not affected by gravity. The frequencies of these
waves are below the inertial frequency, f = 2Ω, of the rotating domain,
and they exist solely due to restoring Coriolis forces. No gravity effects
are present in contrast to the case for surface gravity waves. Pure inertial
waves were initially discovered theoretically by Kelvin [51] in a cylindrical
domain. The axial spheroid was the next geometry where the hyperbolic
equation governing the flow was solved by exactly satisfying the no-normal
flow boundary conditions; by Bryan [21]. Later, Maas [62] presented a semi-
analytical structural solution in a rectangular parallelepiped with straight
walls. Due to their symmetrical shape all three containers do not have any
net focussing which inertial waves are otherwise prone to develop [61]. The
axial spheroid has a symmetric structure, and thus compensates every re-
flected focussing wave with a reflected defocussing wave. In the case of an
axial cylinder or a rectangular parallelepiped, the walls are either parallel
or perpendicular to the rotation axis, therefore such walls possess a local
reflectional symmetry. A simple tilt of one of the walls immediately results
in symmetry breaking and hence in wave focussing and defocussing, such
that due to dominance of the former, wave attractors may appear (e.g.,
[61]).
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All the above mentioned theoretical solutions have also been observed
experimentally. Inertial waves were identified in a rotating axial cylinder
[34, 73, 65, 67, 53], in a slightly tilted free surface cylinder [102], in a
sphere [4], in a tilted spheroid (tilt of its axis of rotation with respect to
the axis of the cavity) [64, 106], in a (truncated) cone [12], in a rectangular
parallelepiped [14, 54, 15] and in a trapezoid [61, 69].

From the theoretical point of view, the solutions for the inertial waves
presented by Maas [62] have a precise structure (revealed by use of the so-
called Proudman-Rao method). The no-normal flow boundary conditions
are satisfied exactly, by construction. Nevertheless, the solution is practi-
cally unusable, due to its poor convergence and Gibbs phenomenon at the
boundaries, as shown in Section 2. We substitute the solution back into
the linear Euler equations governing the flow and calculate the residues.
It appears that the residues of the momentum equations are not exactly
zero, and moreover, their convergence to zero is very slow: with more than
two hundred Fourier modes the residue still is only of order 10−1 of the
maximum flow. The convergence of the residue is faster in the interior,
in comparison to the boundaries, which is caused by the extra Gibbs phe-
nomenon at the boundaries.

In this work, we present an enhanced solution for the free inertial waves
of a rotating planar-rectangular parallelepiped, whose walls are parallel or
perpendicular to the rotation axis. In Section 2, we are presenting a detailed
description of a new algorithm for the construction of this solution. As in
Maas [62], the three-dimensional solution is reduced to a two-dimensional
one, by assuming a standing mode structure in the vertical direction. Thus,
for every vertical mode, the problem reduces to the horizontal plane, where
the techniques introduced by Taylor [101] for rotationally modified sur-
face gravity waves are used. The solution is sought as a superposition of
inertial Poincaré (IP) and inertial Kelvin (IK) waves in the rectangular
parallelepiped, the strictly rotational internal counterparts of the rotation-
ally modified external gravity waves [62]. Two IK waves are chosen as a
’base’ or particular solutions for the flow in the horizontal plane. The IK
waves are assumed to have no motion in the x-direction (u=0, v=v(x, y)),
and thus they satisfy the no-normal flow boundary conditions at x-walls,
x=constant, automatically. IK waves grow exponentially in the along-wall,
y-direction and are thus useful only when two opposite walls exist, exclud-
ing the unbounded growth that appears on infinite planes. Near the y-walls
the normal flow of these IK waves is compensated by addition of an infinite
sum of IP waves. In other words, we are searching a superposition of IK
and IP waves such that the flow governed by them will not be disturbed by
the presence of the solid walls of the domain. The described algorithm (fur-
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ther called Taylor’s method) results in an eigenvalue problem for an infinite
matrix, the finite truncation of which identifies the eigenfrequencies. The
present algorithm has better convergence behaviour in the interior than
the Proudman-Rao approach given by Maas [62]: the residues of the mo-
mentum equations are exactly zero (up to machine precision). Results are
discussed by comparing solutions of one particular eigenfrequency.

Nonetheless, the convergence of the solution is slow near the boundaries.
Therefore, in Section 3 the problem is tackled purely from a numerical per-
spective, by implementing a FEM discretisation of the governing linear
Euler equations on the horizontal plane. The calculated numerical eigen-
frequencies exactly coincide with the results of the above discussed semi-
analytical models. The differences between the numerical and the semi-
analytical solutions are analysed for one particular eigenfrequency. The
numerical results verify the new semi-analytical and FEM based methods.
Conclusions are drawn in Section 4.

3.2 Semi-analytical inertial waves in a

rectangular parallelepiped

3.2.1 3D-to-2D reduction of governing equations

We consider a wave-tank (rectangular parallelepiped) with solid body
rotation. The wave-tank has fixed solid walls, is filled with an incom-
pressible, homogenous fluid and is rotating about a vertical axis z∗ with a
constant angular velocity Ω∗, perpendicular to two of its side walls. Below,
asterisks denote dimensional quantities. We closely follow the notation of
[62]. Small-amplitude monochromatic waves appearing in the homogenous
fluid on a rotating f∗-plane (f∗ = 2Ω∗) are governed by the linearised,
inviscid equations of motion

∂u∗
∂t∗
− f∗v∗ = − 1

ρ∗

∂p∗
∂x∗

, (3.1a)

∂v∗
∂t∗

+ f∗u∗ = − 1

ρ∗

∂p∗
∂y∗

, (3.1b)

∂w∗
∂t∗

= − 1

ρ∗

∂p∗
∂z∗

, (3.1c)

∂u∗
∂x∗

+
∂v∗
∂y∗

+
∂w∗
∂z∗

= 0, (3.1d)
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where (u∗, v∗, w∗) are the three-dimensional velocity components in the
corresponding Cartesian directions (x∗, y∗, z∗), p∗ is the linearised reduced
pressure and ρ∗ is the density.

As in Maas [62], we consider standing modes in the vertical direction
to make w∗ vanish at the rigid bottom z∗ = −H∗ and top surface z∗ = 0,
i.e.,

w∗ =

∞∑
n=1

∂ζn∗
∂t∗

sin
nπz∗
H∗

, (3.2a)

(u∗, v∗, p∗) =

∞∑
n=1

(un∗, vn∗, pn∗) cos
nπz∗
H∗

, (3.2b)

where subscript n refers to the nth vertical mode, and where we discarded
the degenerate (geostrophic) mode with n = 0, and hence w∗ = 0. The
amplitude of the nth internal vertical elevation mode is denoted by ζn∗. The
presence of a solid wall at the top effectively eliminates the gravitational
restoring forces and external gravity waves. Substitution of (3.2) into (3.1)
modifies the governing equations in the following way

∂un∗
∂t∗

− f∗vn∗ = −Hn∗
∂3ζn∗
∂x∗∂t2∗

, (3.3a)

∂vn∗
∂t∗

+ f∗un∗ = −Hn∗
∂3ζn∗
∂y∗∂t2∗

, (3.3b)

∂ζn∗
∂t∗

+Hn∗

(
∂u∗
∂x∗

+
∂v∗
∂y∗

)
= 0, (3.3c)

with Hn∗ ≡ H∗/(nπ) and pn∗ = ρ∗Hn∗(∂
2ζn∗/∂t

2
∗). For a specific nth

vertical mode, (3.3) can be non-dimensionalised with Hn∗ and f−1
∗ as length

and time scales as follows (u, v) = (un∗, vn∗)/(Hn∗f∗): ζ = ζn∗/Hn∗, t =
t∗f∗ and (x, y) = (x∗, y∗)/Hn∗. The dimensionless version of system (3.1)
is

∂u

∂t
− v = − ∂3ζ

∂x∂t2
, (3.4a)

∂v

∂t
+ u = − ∂3ζ

∂y∂t2
, (3.4b)

∂ζ

∂t
+
∂u

∂x
+
∂v

∂y
= 0. (3.4c)

After substitution of (u, v, ζ) ∝ exp(−iσt), system (3.4) becomes

(∆ + κ2)(u, v, ζ) = 0, (3.5)
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where σ is the frequency of monochromatic waves, κ is defined by
κ2 = 1/σ2− 1 and the Laplacian is the following ∆ = ∂xx + ∂yy. Thus, the
horizontal spatial structure of monochromatic waves is determined by the
Helmholtz equation (3.5).

After choosing the Ansatz (3.2), the three-dimensional problem for re-
solving the flow (u, v, w, p) transforms into a two-dimensional (u, v, ζ) prob-
lem in the two-dimensional container, defined in the region 0 ≤ x ≤ L,
−Y ≤ y ≤ Y . Therefore, we are looking for a solution which will satisfy
(3.5) with no-normal flow boundary conditions at the four walls: u = 0 at
x = 0 and x = L , and v = 0 at y = −Y and y = Y . Recall that, because
of the mode (n) dependent scaling, the boundary sizes, L = nπL∗/H∗ and
Y = nπY∗/H∗ also depend on this mode number.

As was already mentioned before, the solution provided via the Proudman-
Rao method in [62] satisfies the boundary conditions by construction, but
suffers from poor convergence in the interior and Gibbs phenomenon at the
boundaries. While some of the eigenfrequencies have indeed been obtained
experimentally [14, 54], validating the precise shape of the corresponding
eigenmodes has been more cumbersome [15]. This may of course be par-
tially due to viscous boundary layers modifying the flow field near the
boundaries, but may also partly be due to this convergence problem. The
latter suggests that the development of a more precise method is desirable.

3.2.2 Taylor’s method

We will present an alternative solution for determining the horizontal
flow of the nth vertical mode in a rectangular parallelepiped. The method
of Taylor is using a combination of results discussed in Maas [62] concerning
inertial Poincaré waves and inertial Kelvin waves. Thus, the algorithm is
applicable to semi-infinite as well as finite, rectangular regions. The idea
is as follows: we search for analytic solutions of the Helmholtz equations
(3.5), which do not or only partially satisfy impermeability conditions at
the boundary, but the superposition of which will meet the requirements
at the boundaries. To construct the final solution we use a combination
of two IK and numerous IP waves defined in a finite meridional channel,
available from [62]. The IK wave solution of (3.4) for a finite meridional
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channel is given by

u = 0, (3.6a)

v = V exp

[
−y + i

x− L/2
σ

− iσt
]
, (3.6b)

ζ = i
v

σ
. (3.6c)

Obviously, the latter wave satisfies no-normal flow boundary condition only
in the x-direction. Meanwhile, IP waves with quantised wave-numbers
{km = mπ/L}, m ∈ {1, 2, 3, ...} are given by

u = vmikm
σ3

1− σ2

[
1 +

(
lm
σkm

)2
]

sin kmx exp i(lmy − σt), (3.7a)

v = vm

(
−lmσ cos kmx+

1

km
sin kmx

)
exp i(lmy − σt), (3.7b)

ζ = vm(cos kmx+
lm
σkm

sin kmx) exp i(lmy − σt), (3.7c)

where km = (km, lm) is the two-dimensional wave number vector and
lm = ±(σ−2 − σ−2

m )1/2 is determined by frequency σ, wave number km and
σm = (1 + k2

m)−1/2. These waves, however, do not satisfy the boundary
conditions v = 0 at y = ±Y , but by contrast do satisfy u = 0 at x = 0, L.

After dropping the common factor exp(−iσt), a solution of the Helmholtz
equation (3.5), expressed in terms of the meridional velocity v, is now sup-
posed to consist of two IK waves that are trapped at the walls y = ±Y ,
and of an infinite sum of channel IP waves, a finite number of which are
free to propagate in the y-direction:

2v = v+exp(i(x− L/2)/σ − y) + v−exp(−i(x− L/2)/σ + y)+

+∞∑
m=−∞,m6=0

vm(ismσ cos kmx+
1

km
sin kmx)exp(smy). (3.8)

In view of the definition of σm, we find: 1 > σ1 > σ2 > . . . . Now, if our
frequency σ lies in between two of these eigenfrequencies: σM > σ > σM+1,
then the sm are imaginary for all m ≤ M , while they are real for m > M .
This implies that the first M modes have real lm, with lm = −ism. Since lm
represent wave numbers, this impliesM propagating modes, while all modes
having m > M are trapped (real sm). For negative m we define s−m = −sm
and k−m = km. Positive m refers either to energy propagation in positive y-
direction, or trapping to y = Y (depending on whether σ is larger or smaller
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than σm). Negative m refers to energy propagation in negative y-direction,
or trapping to y = −Y . When we look for waves that are symmetric
under reflection in the centre, (x, y) → (L − x,−y), the expression for v
has to be invariant under this transformation. This requires v− = v+ ≡ v0,
v2m = −v−2m, v2m+1 = v−(2m+1). When we look for antisymmetric velocity
fields v, these relations should reverse parity (v− = −v+ etc). Consider now
v-symmetric solutions and adopt a Cartesian coordinate frame ξ, y, whose
origin is at the centre of the rectangle, where

ξ =
πx

L
− π

2
. (3.9)

The container is now restricted to ξ ∈ [−π/2, π/2]. Then, with

α ≡ L

πσ
, (3.10)

the v-velocity can be expressed

v = cosh y cosαξ − i sinh y sinαξ+

L

π

∞∑
m odd

(−1)
m−1

2 vm(−ism
α

sinmξ sinh smy +
1

m
cosmξ cosh smy)+

L

π

∞∑
m even

(−1)
m

2 vm(i
sm
α

cosmξ cosh smy +
1

m
sinmξ sinh smy),

(3.11)

where the amplitude v0 has been arbitrarily set equal to one. Here and
in the following all integers occurring in summations are strictly positive.
Notice the point symmetry of (3.11) as it is invariant under the transfor-
mation (ξ, y) → (−ξ,−y). The IK waves (the first two terms in (3.11))
provide a coupling between the IP waves, but numbers α should be non-
integer, as the IK-waves would otherwise be exactly annihilated by one of
the IP-waves (having sm = 1). Eigenfrequencies and amplitudes of each of
the terms in (3.11) follow by rewriting this expression and by application
of the boundary condition at y = ±Y .

The IK waves, possessing non-integer α, yield only the cosine of even
and the sine of odd multiples of ξ in their Fourier representations, as in the
case of reflecting Kelvin waves [101]:
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cosαξ =
4α

π
sin
(απ

2

)[ 1

2α2
+

∑
m even

(−1)
m

2

α2 −m2
cosmξ

]
, (3.12a)

sinαξ =
−4α

π
cos
(απ

2

) ∑
m odd

(−1)
m−1

2

α2 −m2
sinmξ. (3.12b)

These are therefore unable to match the cosine of odd and sine of even mul-
tiples of ξ, also occurring in (3.11). Now we directly expand the terms cosαξ
and sinαξ in (3.11) using (3.12) in cosine of even and sine of odd multiples
of ξ respectively, and require the coefficients of each of the trigonometric
terms to vanish separately at y = Y . The same conditions are obtained by
application of the boundary condition at the opposing boundary y = −Y .
However, this direct approach yields an unwieldy matrix equation. Proba-
bly for this reason, Taylor extended (3.12a) with odd and (3.12b) with even
multiplies ξ. The cosine expansion in (3.12a), for instance, is extended with
cos sξ (s odd), while each such term is counterbalanced by subtracting its
even Fourier expansion (in another application of (3.12a) to odd integers
such that in effects zeroes are added). Each such odd multiple and its
counterbalancing Fourier expansion has an undetermined magnitude βs (s
odd). For the sine expansion similar terms are added yielding undetermined
magnitude γs (s even). These undetermined magnitudes βs and γs can be
obtained from the requirement that the total velocity field v vanishes at
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y = ±Y . The total velocity at y = Y reads:

v(ξ, Y ) =
4α

π
coshY sin

(απ
2

)[ 1

2α2
+

∞∑
m even

(−1)
m

2

α2 −m2
cosmξ

+

∞∑
s odd

βs

(
(−1)

s−1

2
π

4s
cos sξ −

( 1

2s2
+

∞∑
j even

(−1)
j

2

s2 − j2
cos jξ

))]

+ i
4α

π
sinhY cos

(απ
2

)
[ ∞∑
m odd

(−1)
m−1

2

α2 −m2
sinmξ +

∞∑
s even

γs

(
(−1)

s

2
π

4s
sin sξ +

∞∑
j odd

(−1)
j−1

2

s2 − j2
sin jξ

)]

+
L

π

∞∑
modd

(−1)
m−1

2 vm(−ism
α

sinmξ sinh smY +
1

m
cosmξ cosh smY )

+
L

π

∞∑
m even

(−1)
m

2 vm(i
sm
α

cosmξ cosh smY +
1

m
sinmξ sinh smY ). (3.13)

Vanishing of this expression requires the separate vanishing of the coeffi-
cients of cosmξ or sinmξ. For m odd, vanishing of the coefficient of cosmξ
requires

vm = −απ
L

coshY

cosh smY
sin
(απ

2

)
βm. (3.14)

On the other hand, vanishing of the coefficient of sinmξ requires

vm =
4α2

smL

sinhY

sinh smY
cos
(απ

2

)[ 1

α2 −m2
−

∞∑
s even

γs
m2 − s2

]
. (3.15)

The equality of these two expressions for vm determines βm in terms of γs,

1

m2 − α2
+

∞∑
s even

γs
m2 − s2

+ βmλm = 0, (3.16)

where

λm = −smπ
4α

cothY tan
(απ

2

)
tanh(smY ). (3.17)
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For m even, we similarly find that vanishing of the coefficient of sinmξ
requires

vm = −iαπ
L

sinhY

sinh smY
cos
(απ

2

)
γm. (3.18)

Dividing this by the expression for vm obtained from vanishing of the co-
efficient of cosmξ one finds

− 1

m2 − α2
+

∞∑
s odd

βs
m2 − s2

+ γmµm = 0, (3.19)

where

µm =
smπ

4α
tanhY cot

(απ
2

)
coth(smY ). (3.20)

If we define µ0 = 0, (3.19) also includes, for m = 0, the extra requirement
that the constant term in (3.13) vanishes. Note that in the expressions
for λm and µm, sm occurs in product with either tanh smy or coth smy.
The replacement sm = ilm when σ < σm, and the property tanh iz =
i tanh z (for real z), therefore leaves these expressions real, regardless of
whether sm is real or imaginary, making a cumbersome sign-distinction (as
in Taylor [101]) unnecessary. It also guarantees λm and µm (and therefore
the eigenfrequencies) to be real. Interpreting each first term of (3.16) and
(3.19) as multiplying a quantity γ0(= 1), the set of equations forms a system
of infinite matrix equations Ac = 0, where A is as follows

A =



1
α2

−1
12 0 −1

32 0 ...
1

12−α2 λ1
1

12−22 0 1
12−42 ...

−1
22−α2

1
22−12 µ2

1
22−32 0 ...

1
32−α2 0 1

32−22 λ3
1

32−42 ...

.

.

.


, (3.21)

and column vector c = (γ0, β1, γ2, β3, ...)
T , where superscript T means

transpose. Matrix A is twice as big as the matrix obtained when directly
expanding the terms in (3.11), alluded to above, but is much simpler to
handle. Apart from differences in the definitions of the diagonal terms λm
and µm, together with the fact that our α is a function of frequency, (3.10),
the matrix equation exactly conforms with Taylor’s. Nontrivial solutions
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result only when its determinant vanishes, detA = 0, which (through α)
can be regarded as an equation establishing eigenfrequencies σ. Amplitudes
βm (m is odd) and γm (m is even), for any particular σj , j = 1, 2... can
be determined by the inversion of the reduced matrix that can be obtained
from (3.16) and (3.19), where we now exclude the first row, corresponding
to m = 0, and bring the first column to the right of the equation, which
can now be regarded as known. With these amplitudes, from (3.15) and
(3.18), also the amplitudes vm in the expansion of v, Eqn. 3.11, are deter-
mined, and the solution is in essence complete. We also note that similar
expressions can be obtained for antisymmetric solutions, where

λm = −smπ
4α

tanhY tan
(απ

2

)
coth(smY ), (3.22a)

µm =
smπ

4α
cothY cot

(απ
2

)
tanh(smY ), (3.22b)

and making similar replacements, sinhY ⇐⇒ − coshY and
sinh smY ⇐⇒ cosh smY , in coefficients vm and again, but with regards to
the y-dependence, in fields u, v and ζ.

For each eigenvalue and corresponding set of amplitudes vm, the velocity
and elevation fields are now determined. Hence, the u velocity component
of infinite sum of IP waves (3.7), with their corresponding eigenvalue and
set of amplitudes vm, reads

u =

∞∑
m odd

i(−1)
m−1

2 vm

( α
m
− m

α

)
cosmξ cosh smy

+

∞∑
m even

i(−1)
m

2 vm

( α
m
− m

α

)
sinmξ sinh smy. (3.23)

The vertical elevation field then follows from the continuity equation

ζ =− σ−1

(
∂u

∂x
+
∂v

∂y

)
= −iσ−1(πL−1uξ + vy) =

− σ−1(i sinh y cosαξ + cosh y sinαξ)

−
∞∑

m odd

i(−1)
m−1

2 vm

(
sinmξ cosh smy +

iαsm
m

cosmξ sinh smy

)

+

∞∑
m even

i(−1)
m

2 vm

(
cosmξ sinh smy −

iαsm
m

sinmξ cosh smy

)
.

(3.24)
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The eigenfrequencies are determined by truncating the infinite matrix to
include just N rows and columns. Finding the roots of the resulting deter-
minant numerically, and observing convergence of these roots upon increase
of the number of rows, the set of eigenfrequencies σj , j = 1, 2... is deter-
mined (approximately).

3.2.3 Comparison of two methods:
Taylor’s method vs. Proudman-Rao method

Next, this novel Taylor’s method for a construction of semi-analytical
solutions for the linearised Euler equations in a rectangular parallelepiped
is tested and verified from a numerical perspective. First a few eigenfre-
quencies are determined in a given [π× 2π] rectangle, see Figure 3.1. Also,
an independent verification is performed by comparing the latter eigen-
frequencies to the frequencies for a [2π × π] rectangle in Figure 3.1. The
eigenfrequency of the first symmetric mode is σ∗1 = L/πα1 ≈ 0.657, which
corresponds to the first root in Figure 3.1a, at α1 ≈ 1.522. The next two
eigenfrequencies of symmetric velocity modes are σ∗2 = L/πα1 ≈ 0.477,
α2 ≈ 2.095 and σ∗3 = L/πα1 ≈ 0.398, α3 ≈ 2.513. Numerical computations
for the frequencies and modal structures are assessed for several antisym-
metric and symmetric modes. The eigenfrequencies and eigenmodes com-
puted in this manner for the rotationally modified surface gravity modes
are in agreement with numerical values obtained many years ago by Taylor
[101] and later by Rao [86] and for the inertial modes with those com-
puted in [62]. It is also worth to mention that the Proudman-Rao method
is much faster in converging to the modal eigenfrequencies compared to
Taylor’s method.

Furthermore, close agreement in the eigenfrequencies of the modes en-
ables a comparison between corresponding velocity fields of semi-analytical
inertial waves constructed by the present Taylor’s method to the previ-
ously employed Proudman-Rao method. The semi-analytical solutions are
assessed according to the following criteria: (i) satisfaction of governing
equations; (ii) satisfaction of the boundary conditions; and, (iii) speed of
convergence. In both cases, solutions have the same standing mode struc-
ture in the vertical z-direction. Thus, the comparison is performed only on
the horizontal plane. For a fair comparison in the calculations the same
number of ’basis functions’ are used: IP waves in Taylor’s method and
Fourier modes in the Proudman-Rao method.

The comparison is performed on a [2π×π] domain for the highest mode
σ ≈ 0.657 of the antisymmetric velocity field. In Figure 3.2 the horizon-
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3.2. Semi-analytical inertial waves in a rectangular parallelepiped

Figure 3.1: (a) Det A as a function of α for L = Y = π for a mode whose
v-velocity is symmetric. Hence, L × 2Y = π × 2π. Intersections with
the horizontal line give the eigenfrequencies. The vertical lines represent
asymptotes whose intersections with the horizontal axis should be disre-
garded. (b) Det A (for clarity multiplied by 103) as a function of α for
L = 2π, Y = π/2, which represents a 2π × π rectangle. Since the present
rectangle has a width L twice that in (a), and σ = L/πα, eigenfrequencies
will be the same when the zeros are now found at α’s twice that obtained
in (a), which we verify by inspection.
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tal u and v velocity fields constructed via Taylor’s method are presented.
For the first comparison the constructed modal solutions were substituted
into the linear Euler equations and the residues are calculated. Obviously,
due to the construction, in both algorithms the continuity equation and
third momentum equation are satisfied exactly. Thus, in Figure 3.3 and
Figure 3.4 only the residues for the u and v momentum equations are pre-
sented. It is apparent from Figure 3.3 that the Proudman-Rao method
performs very poorly near the boundaries, which is explained by the Gibbs
phenomenon. Also, the convergence is poor in the interior of the domain.
By contrast, Figure 3.4 shows that in Taylor’s method the rotating Eu-
ler equations are satisfied up to machine precision. The latter indicates
that Taylor’s method is preferable to Proudman-Rao, in this context. The
differences between the constructed solutions are given in Figure 3.5. Ac-
cording to Figure 3.5 the main differences between the solutions are near
the boundaries (y-wall for the u and x-wall for the v-component of the
velocity). Near these boundaries the Proudman-Rao method suffers from
a Gibbs phenomenon. In spite of its advantages, Taylor’s method still
has its flaws. The essence of the method is in ’filling’ the solution with
numerous IP-waves, to compensate the IK-waves motion near the bound-
aries in order to satisfy the no-normal flow boundary conditions. Thus,
the more IP-waves are taken, the less no-normal flow will be registered
near the appropriate boundaries. As can be noticed from Figure 3.2, the
convergence is poor: non-zero flow is present near the x-boundary for the
v-component of the velocity field and similarly near the y-boundary for the
u-component. The nature of the convergence near the boundaries can be
observed more closely in Figure 3.6. It shows that when the number of IP
waves exceeds 100, the curve nearly stops decreasing. The latter suggests
that despite the satisfaction of the Euler equations up to machine preci-
sion, the velocities constructed by Taylor’s method, are not satisfying the
boundary conditions exactly. Therefore, Taylor’s method fails the second
comparison test, namely satisfaction of the boundary conditions; whereas
the satisfaction of the boundary conditions in the Proudman-Rao method
was embedded in the construction. Due to the problems mentioned both
methods globally fail the third assessment criterion. Nevertheless, it is
worth to mention that the Proudman-Rao method is faster in convergence
of the eigenfrequencies, whereas convergence of the velocity field of Tay-
lor’s method is high in the interior of the domain, but quite slow at the
boundaries. Finally, if one of these two semi-analytical solutions has to be
chosen, it remains which property is preferred: satisfaction of boundary
conditions (Proudman-Rao method) or satisfaction of governing equations
(Taylor’s method) up-to machine precision.
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3.2. Semi-analytical inertial waves in a rectangular parallelepiped

(a) u profile

(b) v profile

Figure 3.2: Antisymmetric horizontal velocity fields on the x− y plane for
mode σ ≈ 0.657 constructed via Taylor’s method, (a) and (b) subfigures
are u(x, y) and v(x, y), respectively. The domain is rotating anti-clockwise
and 20 IP waves were used.
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(a)

(b)

Figure 3.3: Antisymmetric horizontal velocity fields in the x–y plane for
a mode with frequency sigma σ ≈ 0.657 were substituted in the linearised
Euler equations. (a) and (b) subfigures are the residues for velocities u and
v in their respective momentum equations, as produced by the Proudman-
Rao method.
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(a)

(b)

Figure 3.4: As Figure 3.3 using Taylor’s method.
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(a)

(b)

Figure 3.5: Antisymmetric horizontal velocity fields in the x–y plane for a
mode with frequency sigma σ ≈ 0.657 are constructed with two alternative
algorithms. (a) and (b) subfigures give the differences between the results
produced by the Proudman-Rao and Taylor’s methods for the u and v
velocity components, respectively.
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Figure 3.6: The maximum (numerical) speed v normal to the East-West
boundaries is plotted against the number of IP waves used in Taylor’s
method.

3.3 FEM solution of linear inertial waves

In the previous section, it has been shown that both semi-analytical
solutions for linear inertial waves have at least one major disadvantage.
Therefore, next we present a purely numerical FEM solution for the inertial
wave problem. First, the same vertical standing mode decomposition is
considered, to reduce the inertial wave problem from 3D to 2D. Second, a
FEM discretisation of the 2D boundary value problem given by the system
(3.4) is constructed, with the mandatory satisfaction of the no-normal flow
boundary conditions.

3.3.1 Weak formulation and resulting eigenvalue
problem

A 2D boundary value problem is given on a rectangular domain
Ω = {0 ≤ x ≤ L;−Y ≤ y ≤ Y } by the following partial differential
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Figure 3.7: Tessellation Ih of the domain Ω with its four boundaries
Γ1, . . . ,Γ4.

equations

∂u

∂t
− v = −∂xp, (3.25a)

∂v

∂t
+ u = −∂yp, (3.25b)

−q + ∂xu+ ∂yv = 0 (3.25c)

∂q

∂t
= −p (3.25d)

and no-flow boundary conditions at the walls ∂Ω = ∪Γi. The latter system
is derived from (3.4), when the pressure is taken to be p = ∂2ζ/∂t2. The
system introduced above is energy conserving, where the energy functional
is given by

H =
1

2

∫
Ω

(u2 + v2 + q2) dΩ. (3.26)

Multiplication of (3.25) with u, v, p and q, respectively, integration over
the domain followed by a summation and use of the boundary condition
u · n = 0 with outward normal n, results in energy conservation of the
system: Ḣ ≡ dH/dt = 0, where the dot represents a time derivative.

81



3.3. FEM solution of linear inertial waves

A weak formulation of (3.25) is given by∫
Ω

(
∂u

∂t
+ u⊥

)
φ dΩ = −

∫
Ω

(∇p)φ dΩ, (3.27a)∫
Ω

(−q)φ dΩ−
∫

Ω
∇φ · u dΩ = −

∫
∂Ω

u · nφ dS, (3.27b)∫
Ω

∂q

∂t
φ dΩ = −

∫
Ω
pφ dΩ, (3.27c)

where the velocity field is given in terms of the two-dimensional vector
u = (u, v)T , the perpendicular velocity vector is u⊥ = (−v, u)T , the two-
dimensional differential operator is ∇ = (∂/∂x, ∂/∂y)T and φ is a test func-
tion taken from H1

0 (Ω). Hence, the function spaces are chosen to be

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}, with (3.28a)

H1(Ω) = {v ∈ L2(Ω) :
∂v

∂x
,
∂v

∂y
∈ L2(Ω)}, (3.28b)

where L2 is a space of square integrable functions.
Note that after multiplication with a test function φ, we only do in-

tegration by parts in the continuity equation, and skip the integration by
parts in the momentum equation, which is a slight modification of a clas-
sical FEM weak formulation. This way we ensure the conservation of the
energy on the discrete level, as shown later. The latter is crucial for an
accurate and robust numerical scheme.

After taking into an account no flow boundary conditions u · n = 0 at
∂Ω, (3.27) becomes∫

Ω

(
∂u

∂t
+ u⊥

)
φ dΩ = −

∫
Ω

(∇p)φ dΩ, (3.29a)∫
Ω

(−q)φ dΩ−
∫

Ω
∇φ · u dΩ = 0, (3.29b)∫

Ω

∂q

∂t
φ dΩ = −

∫
Ω
pφ dΩ. (3.29c)

Given a tessellation Ih of the domain Ω, we search for a weak solution of
system (3.29) in

Vh = {v : v is continuous on Ω, v|K ∈ Pd(K) ∀K ∈ Ih} ⊂ H1(Ω),
(3.30)
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with Pd(K) the space of polynomials of at most degree d on K ∈ Ih, where
d ≥ 0. Variables u, v, p, q are represented via their expansions in terms of
basis functions

u = uiφi, p = piφi, q = qiφi, (3.31)

where φi ∈ Vh and ui, pi, qi are expansion coefficients. We note that, here
and hereafter, we use the Einstein convention implying summation over
repeated indices. Incorporation of (3.31) into the weak formulation (3.29)
results in

Miju̇j +Miju
⊥
j = −Sijpj , (3.32a)

Mijqj + Sji · uj = 0, (3.32b)

Mij q̇j = −Mijpj , (3.32c)

where Mij =
∫
Ih φiφj dx, Sij = (Sxij , S

y
ij)

T =
∫
Ih φi∇φj dx. If we multiply

the discrete momentum equation with ui, the continuity equation with pi,
(3.32c) with qi and sum over all nodes, we will obtain the following equation

d

dt

(1

2
(Mijui · uj +Mijqiqj)

)
= 0, (3.33)

which ensures the conservation of a discrete energy functional in time, in
addition to the conservation at the continuous level.

The unknowns pj and qj can be eliminated from (3.32): when a time
derivative of (3.32b) is taken and the results are substituted into (3.32a)
while using (3.32c), we obtain

Mij u̇j + SxilM
−1
lk S

x
jku̇j + SxilM

−1
lk S

y
jkv̇j = Mijvj , (3.34a)

Mij v̇j + SyilM
−1
lk S

x
jku̇j + SyilM

−1
lk S

y
jkv̇j = −Mijuj . (3.34b)

After incorporation of the Ansatz (u, v) ∝ exp(−iσt) into (3.34), we arrive
at the following global generalised eigenvalue problem

iσ

[
Mij + SxilM

−1
lk S

x
jk SxilM

−1
lk S

y
jk

SyilM
−1
lk S

y
jk Mij + SyilM

−1
lk S

x
jk

][
uj
vj

]
=[

0 −Mij

Mij 0

] [
uj
vj

]
.

(3.35)
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3.3.2 Numerical eigenfrequencies and tests against
semi-analytical solutions

In the following subsection a numerical solution of the generalised eigen-
value problem (3.35) is discussed. For the particular simulation
two-dimensional linear Bernstein polynomials were chosen as a set of basis
functions for the FEM problem given on the rectangular tessellation Ih of
the continuous domain Ω, see Figure 3.7.

For a given n ∈ N/{0}, the corresponding Bernstein polynomials of
degree n are defined by

Bn
k (x) =

(
n

k

)
xk(1− x)n−k, ∀x ∈ [0, 1], k = 0, 1, ..., n, (3.36)

where
(
n
k

)
is a binomial coefficient and N is the set of natural numbers.

Bernstein polynomials are linearly independent and span the space of poly-
nomials of degree n. Bernstein polynomials are invariant under affine trans-
formations, and all the terms of the Bernstein basis are positive on the
interval where they are defined, and their sum equals to one. Additionally,
a Bernstein polynomial is always better conditioned than a polynomial of
power form for the determination of simple roots on the unit interval [0, 1].
The latter properties justify our choice of Bernstein polynomials to repre-
sent the polynomial space in the definition of Vh in (3.30).

The solution of the generalised eigenvalue problem (3.35) emerges in
pairs of eigenvalues and corresponding eigenvectors. The set of eigenvalues
is compared to the eigenvalues calculated from the semi-analytical solutions
of the same problem, as discussed in the previous section. Unfortunately,
alongside the acceptable eigenvalues, the method produces high frequency
noise. Nevertheless, it appears that numerical, ’noisy’ eigenvalues are not
consistent for different runs, with different mesh sizes, which enables us
to construct a simple algorithm for identifying the acceptable eigenvalues
from the numerical noise. The numerical implementation of (3.35) is ini-
tialised consequently with four different meshes, four different tessellations
of a domain Ω = [2π × π] into 20 × 10, 40 × 20, 80 × 40 and 160 × 80
elements. The latter results in four sets of eigenvalues. From these four
sets of eigenvalues, we notice that acceptable eigenvalues are converging.
By contrast, the numerical noise eigenvalues are appearing and disappear-
ing in the different runs. The latter suggests a simple ’decision algorithm’:
stationary (one has to allow convergence shifts, of course) eigenvalues for
different runs and mesh-size are considered acceptable, and the rest is nu-
merical noise. In other words, in the scale, which corresponds to the densest
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mesh size, the presence of four converging eigenvalues (from different sets)
is identifying the numerical eigenvalue as acceptable, otherwise it is consid-
ered numerical noise. In Figure 3.8 we present a graphical interpretation
of the suggested ’decision algorithm’. The spots that are overlaid from all
four sets of eigenvalues on the densest mesh scale (∆x ≈ 0.006) are accept-
able. We note that eigenvalues which are close and/or converge to 1 can
be neglected, because the eigenfrequency we search for need to be smaller
than one. Also, substantial numerical noise is noticeable near 0, but this
behaviour is expected for any solution of a numerical eigenvalue problem.
Thus, following the latter ’decision algorithm’, we are able to reproduce
every eigenfrequency found by the semi-analytical methods.
After the exact matching of numerical eigenfrequencies with semi-analytical
eigenfrequencies, we proceed to compare the corresponding velocity fields,
through the comparison of the eigenvectors. In the previous section, the
discussion revolved around the comparison of two semi-analytical solutions
for the velocity field of the highest eigenfrequency in a [2π × π] domain.
Hence, here too, we consider the velocity field corresponding to the same
σ ≈ 0.657 eigenfrequency. In Figure 3.9 both components of the numerical
two-dimensional velocity field corresponding to the eigenvalue σ ≈ 0.657
are depicted. The numerical velocity field is a result of a simulation on a
mesh with 80 × 40 elements. Flow near the normal boundaries is nearly
absent. It is apparent that the equations and the corresponding boundary
conditions are satisfied up-to FEM accuracy.

Results discussed in the previous section justify a comparison plot of the
numerical solution against just Taylor’s semi-analytical solution. Hence, in
Figure 3.10 we introduce a comparison plot of the two velocity vectors. The
comparison is fair, due to the comparability in sizes of the resulting eigen-
value problems in both the numerical and semi-analytical cases. As was
expected, the difference is noticeable near the normal boundaries, where
Taylor’s method has slow convergence.

3.4 Summary and conclusions

We have shown numerically that the Proudman-Rao method for deriv-
ing modal solutions of the linear, rotating incompressible Euler equations in
a (planar) rectangular parallelepiped bounded with solid walls suffers from
poor convergence in the interior of the fluid domain as well as a Gibbs phe-
nomenon at the boundaries. Despite the concise structural construction,
the solution is practically unusable. Therefore, an alternative mode decom-
position solution (Taylor’s method) was presented. The three-dimensional
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Figure 3.8: Four different sets of eigenvalues are plotted here. Black
squares, red circles, blue crosses and green diamonds correspond to the set
of eigenvalues from simulations with mesh-sizes 160×80, 80×40, 40×20 and
20×10, respectively. The first four highest eigenfrequencies are highlighted.
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(a) u profile

(b) v profile

Figure 3.9: u and v components of the numerical horizontal velocity for
mode σ ≈ 0.657 are presented in (a) and (b) subplots, respectively. An
80 × 40-element mesh is used for the simulations in a domain which is
rotating anti-clockwise.
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(a)

(b)

Figure 3.10: (a) and (b) subfigures give the difference between the nu-
merical FEM solution and Taylor’s semi-analytical solution in the u and v
velocity components, respectively. An 80× 40-element mesh is used for the
FEM simulation.
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problem was reduced to a two-dimensional problem by using the Ansatz
of vertical modes in the z-direction, exactly repeating the arguments from
[62]. By scaling the depth of the tank with H∗/nπ for the vertical mode
n, we remove all reference to the vertical and the problem can be solved
for each vertical mode strictly in the horizontal plane (whose size is fixed
except for an n-dependent rescaling of the basin’s size). The resulting
two-dimensional problem in the horizontal plane was solved by employing
ideas and results that Taylor [101] used to determine the rotational effects
on long surface gravity waves. As in the Proudman-Rao method, Taylor’s
method also leads to an infinite matrix eigenvalue problem, whose solution
upon truncation gives similar results. The novel mode solutions satisfy the
linear Euler equations exactly, thus they are considered to be an improve-
ment over those obtained with the Proudman-Rao method. Nevertheless,
the novel semi-analytical solution has its own flaws. The mode solutions
are, by construction, a superposition of inertial analogs of surface Kelvin
and Poincaré wave solutions, which converge to solutions that satisfy the
solid-wall boundary conditions. Unfortunately, the latter convergence is
also slow. By contrast, the Proudman-Rao solution satisfies the no-normal
flow boundary conditions exactly.

The latter motivated us to apply a continuous finite element (FEM)
discretisation to the reduced two-dimensional problem (based on using a
standing wave in the vertical of the original three-dimensional problem)
in order to obtain numerical mode solutions that satisfy no-normal flow
boundary conditions by construction. A modified FEM discretisation is
proven to be symmetric and energy conserving on a discrete level, which
plays an essential role in the stability and accuracy of this scheme (e.g.,
[18]). The resulting discrete system is solved via a generalised eigenvalue
solver, which unfortunately produces a substantial amount of numerical
noise. Nevertheless, a simple ’decision algorithm’ is suggested to separate
acceptable numerical eigenfrequencies from numerical noise. Finally, this
numerical solution is tested against the semi-analytical solution.

Extensive comparison between the two semi-analytical and numerical
solutions enables one to adopt the most appropriate method for resolving
the inertial waves. The Proudman-Rao method facilitates fast convergence
of eigenfrequencies and the determination of semi-analytical solutions that
satisfy the boundary conditions exactly because this is embedded in the con-
struction algorithm. However, this method displays a Gibbs phenomenon
at the boundaries. Unlike the Proudman-Rao method, Taylor’s method en-
ables a semi-analytical solution exactly satisfying the governing equations,
but with slow convergence near the boundaries. The numerical solution,
based on a modified FEM discretisation, implements a very accurate but
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relatively slow method, which requires an extra step to separate the ac-
ceptable eigenfrequencies from numerical noise. Depending on one’s needs
one might choose one of the suggested methods.

The solutions we have presented have been used to verify the novel
numerical technique developed in [79] for the initial-value problem of three-
dimensional inertial waves in arbitrarily shaped domains. This method is
geared to investigate whether wave attractors ([61, 69, 88] ) and complex
eigenmodes (such as in [17]) emerge in domain shapes of sufficient geometric
complexity.

Additionally, we note that solutions of the Euler equations, by default
inviscid, presented above are also relevant in the viscous case (Navier-Stokes
equations), which is not intuitive at first glance. In experiments like those
in [34, 73, 65, 67, 53, 102, 4, 64, 106, 12, 14, 54, 15, 69], a variety of forc-
ing mechanisms and geometries have been applied. In some cases forcing
occurs by pumping through viscous boundary layers, e.g. either on con-
vex (outer) or concave (inner) parts of spherical shells; in other studies
by means of the Euler force (using libration). Experiments performed in
square domains [14, 54, 15], seem to show that inviscid eigenmodes derived
above are relevant in the sense that energy spectra display peaks at inviscid
eigenfrequencies of some of the larger scale eigenmodes. In two experiments
[14, 54] forcing arises by pulling a grid through the fluid, leaving a set of
waves behind. In another experiment with a libration ([15]), forcing occurs
through Ekman-layer convergence, lending the spatial structure of the re-
sponse much more of a beam-like character. Note, however, that due to the
degeneracy discussed in [62] (near-degeneracy for numerical results) inter-
nal (gravity) and inertial waves have a much more flexible (‘chameleonic’)
spatial structure than that of the eigenmodes of elliptic problems (like sur-
face waves). Indeed, in general one observes that the inviscid response (in
combination with any spatial structure in the forcing) is determining the
field’s spatial structure, slaving the viscous (boundary layer) response, and
not the other way around.
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Chapter 4

Nonlinear dynamics

A new Hamiltonian formulation for three-dimensional inviscid com-

pressible fluid flow in a rotating domain containing both solid walls

and a free surface is presented. Initially a Hamiltonian energy func-

tional and related Poisson bracket are conjectured, which formulation

results in the compressible Euler equations with a free surface. Subse-

quently, the same Hamiltonian formulation is derived starting from a

Lagrangian functional expressed in terms of Eulerian variables. This

derivation starts with a transformation of the Lagrangian functional

in Eulerian variables to canonical Clebsch variables. Subsequently,

the variational principle is applied to the transformed Lagrangian

functional, which yields the Hamiltonian formulation in terms of the

canonical Clebsch variables. A further transformation from Cleb-

sch variables to Eulerian variables results in the same Hamiltonian

functional and Poisson bracket that were originally conjectured and

concludes the verification of the Hamiltonian formulation.



4.1. Introduction

4.1 Introduction

Many wave phenomena in the ocean are governed by the (non)linear
(in)compressible Euler equations, coupled with free surface boundary con-
ditions. The Euler equations are obtained from the Navier-Stokes equations
by setting the viscosity and heat conduction terms to zero. In the ocean,
fluid flow can be considered incompressible due to the small changes in the
density profile over space and time, and inviscid because of the relatively
small influence of viscosity and surface tension on waves and currents. Due
to the interaction of waves and currents vorticity is, however, important
for many applications. This motivates the use of the Euler equations, since
they allow the modelling and computation of free surface waves, currents
and wave-current interactions in the deep ocean, including the effects of
vorticity, which is frequently neglected in other mathematical models.

Over the past decades a wide variety of nonlinear wave models for deep
water free surface and internal waves have been developed. Most of them
were based on potential flow theory (e.g. [59, 29] ), where the wave prop-
agation is essentially considered irrotational and inviscid (until the point
of wave breaking). The potential flow equations consist of the Laplace
equation for the velocity potential in the interior of the fluid coupled to
two nonlinear equations at the free surface: the kinematic boundary condi-
tion, describing the evolution of the free surface in time, and the dynamic
boundary condition, which is essentially Bernoulli’s equation. In this way,
the dynamics of free surface waves in a non-stratified fluid can be described
until wave breaking. The Euler equations provide an important extension
of the potential flow model by including vorticity.

Instead of the Euler equations it is also possible to consider the full
Navier-Stokes equations (e.g. [94] and references therein), but for long
time simulations on a large domain, which is often necessary in free surface
wave simulations, these methods are currently still too dissipative and not
sufficiently accurate.

An important feature of both the potential flow and Euler models is
that they have a variational and Hamiltonian structure. This can be em-
ployed to develop numerical discretisations based on a discrete variational
and Hamiltonian structure with associated discrete conservation laws, with
benefits such as no numerical dissipation (no energy drift), minimal disper-
sion error and excellent long time stability. An example of such numerical
discretisation for the linear Euler equations for incompressible flow is dis-
cussed in Chapter 2. Additional benefit of having numerical discretisations
based on a variational principle is that the complete dynamics is defined
through one functional, a coordinate system-independent Lagrangian, that
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is often a good starting point for a variational finite element discretisation.
In case of a proper choice for the numerical discretisation important conser-
vation laws and the mathematical structure of the continuous mathematical
model can than also be preserved in a discrete sense.

A further formalisation of the variational principle may, in some cases,
result in a Hamiltonian system. The benefits of the Hamiltonian framework,
presented in the introductory chapter of this thesis, motivated us to derive
a Hamiltonian description of the three dimensional Euler equations for an
inviscid, compressible fluid with a free surface boundary condition in a
rotating frame. This is a first, important step in the development of an
equivalent model for the incompressible Euler equations with a free surface
using the Dirac theory, which is applied in Chapter 2 to obtain a variational
discretisation of the linearised Euler equations for incompressible flow.

In this chapter the main focus will be on the Hamiltonian formulation
for nonlinear compressible flow with a free surface. In Section 4.2 the Hamil-
tonian formulation for a nonlinear, inviscid compressible fluid in a domain
with a free surface boundary and solid walls is conjectured. The correctness
of this mathematical model is subsequently verified in Section 4.3 using an
action principle applied to a Lagrangian expressed in Clebsch variables.
This makes it much easier to verify satisfaction of the mandatory proper-
ties of the Poisson bracket (1.2) and, after a change of variables, we can
derive the same Hamiltonian formulation as was conjectured in Section 4.2.
In Section 4.4 we also discuss the special case of the linearised compressible
Euler equations with a free surface. Conclusions are drawn in Section 4.5.

4.2 Nonlinear Hamiltonian framework

We consider a rectangular domain D with solid lateral boundaries on
the sides, a rigid bed at the bottom and a free surface at the top (see
Figure 4.1). The boundaries of the domain D are denoted with ∂D =
∪5
i=1∂Di ∪ Γs, where ∂D1, ∂D2, ∂D4 and ∂D5 are the vertical lateral

boundaries, ∂D3 is the bottom and Γs is the free surface. Cartesian coor-
dinates and time are introduced via x = (x, y, z) and t, respectively; the
three-dimensional and two-dimensional differential operators are denoted as
∇ = (∂/∂x, ∂/∂y, ∂/∂z)T and ∇ = (∂/∂x, ∂/∂y)T . The three-dimensional
velocity, scalar density and pressure fields are represented, respectively, as
u = u(x, y, z, t) = (u, v, w)T , ρ = ρ(x, y, z, t), and P = P (ρ). The free sur-
face is described as z = h(x, y, t) + b(x, y) relative to a horizontal reference
plane z = 0, where h = h(x, y, t) is the water depth and b = b(x, y) a fixed
bottom topography. The constant gravitational acceleration g is acting in
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Figure 4.1: A vertical cut of a three-dimensional domain and its boundaries.

the negative z-direction. The background rotation of the domain is added
via the angular velocity Ω = (Ω1,Ω2,Ω3)T . The compressible fluid flow
in the domain D is governed by the nonlinear, isentropic (or barotropic)
compressible Euler equations, together with the kinematic and dynamic
boundary conditions at the free surface

∂u

∂t
= −(u ·∇)u− 2Ω× u− ρ−1∇P (ρ)−∇(gz), (4.1a)

∂ρ

∂t
= −∇ · (ρu), (4.1b)

∂h

∂t
= u · (−∇(h+ b), 1)T at the free surface Γs, (4.1c)

P = Pc at the free surface Γs, (4.1d)

where Pc is the constant atmospheric pressure at the free surface. The
internal energy of the fluid U(ρ) and the pressure are connected as P =
ρ2Uρ.

The Hamiltonian energy functional H is the total energy of the dynam-
ical system. It consists of the integral of the densities of the kinetic energy
1
2ρ|u|

2, the internal energy ρU(ρ) and the potential energy ρgz, integrated
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over the time dependent domain D = D(t),

H =

∫
D(t)

ρ

(
1

2
|u|2 + U + gz

)
dΩ. (4.2)

Note, the domain is changing in time due to the time dependent free sur-
face motion at the top. We limit ourselves to the case in which the free
surface stays single-valued over time. Hence, the energy functional H can
be rewritten as a double integral over the horizontal projection of the free
surface and an integral from the bottom to the time-dependent free surface

H =

∫
Γh

∫ h(x,y,t)+b(x,y)

b

(
1

2
ρ|u|2 + ρU(ρ) + ρgz

)
dz dxdy, (4.3)

where Γh is the projection of the free surface Γs onto the horizontal plane.
In this case, variations of the Hamiltonian energy functional are as follows

δH ≡ lim
ε→0

H[u + εδu, ρ+ εδρ, h+ εδh]−H[u, ρ, h]

ε

=

∫
Γh

∫ h(x,y,t)+b(x,y)

b(x,y)
ρu · δu +

(
1

2
|u|2 + (ρU)ρ + gz

)
δρdz dxdy+∫

Γh

(
1

2
ρ|u|2 + ρU + ρgz

)
z=h(x,y,t)+b(x,y)

δh dxdy. (4.4)

As a consequence of the variations δρ, δu and δh being arbitrary, the func-
tional derivatives of the Hamiltonian take the following form

δH
δu

= ρu,
δH
δρ

= (ρU)ρ +
1

2
|u|2 + gz,

δH
δh

=

[
1

2
ρ|u|2 + ρU + ρgz

]
z=h(x,y,t)+b(x,y)

. (4.5)

To complete the introduction of the Hamiltonian framework for a nonlinear
compressible fluid flow with a free surface we have to introduce a (gener-
alised) Poisson bracket.

Traditionally, there are two approaches to obtain a Poisson bracket.
Firstly, one can try to conjecture a complete set of (non)canonical variables
and state a skew-symmetric bracket, which later should be proven to sat-
isfy all the requirements of a Lie algebra. The bracket then is the required
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Poisson bracket. Secondly, one could also start with a corresponding vari-
ational principle, apply an action principle to the Lagrangian functional
in canonical variables, derive the Poisson bracket and transform it from
canonical variables to Eulerian variables.

Here, we start with conjecturing a skew-symmetric Poisson bracket and
show its correspondence to the nonlinear Euler equations with a free surface,
leaving the indirect proof of the bracket properties (1.2), Jacobi identity in
particular, till Section 4.3.

As starting point we use the Poisson bracket for a three-dimensional
ideal fluid in non-canonical Eulerian variables presented in [76], with the
addition of a background rotation of the domain,

{F ,H} =

∫
D

δH
δρ

∇ · δF
δu
− δF
δρ

∇ · δH
δu

+
2Ω + ∇× u

ρ
· δH
δu
× δF
δu

dΩ.

(4.6)

This addition allows the modelling of interior fluid flow in rotating domains,
governed by the three-dimensional nonlinear Euler equations, but lacks any
representation of the free-surface dynamics. The extension of the Poisson
bracket to account for the free surface dynamics must be done with care,
since it can easily interfere with other contributions in the Poisson bracket.
We conjecture that the following bracket combines both the dynamics of
the flow field described by the compressible Euler equations and the free
surface

{F ,H} =

∫
D

δH
δρ

∇ · δF
δu
− δF
δρ

∇ · δH
δu

+
2Ω + ∇× u

ρ
· δH
δu
× δF
δu

dΩ

+

∫
Γs

1

ρ
n̂s ·

[
−δH
δh

δF
δu

+
δF
δh

δH
δu

]
z=h(x,y,t)+b(x,y)

dS, (4.7)

where n̂s = (−∇(h+ b), 1)/|(−∇(h+ b), 1)| is the unit outward normal
vector at the free surface with n̂sdS = nsdxdy and ns = (−∇(h+ b), 1)T .

Generally, in PDE-based models, boundary conditions are specified on
the variables (e.g. u · n̂s = 0 at solid walls), whereas, in Hamiltonian
dynamics essential boundary conditions are frequently specified via a re-
striction on the function spaces on which the unknown functional is defined.
In case of a solid wall boundary condition, the arbitrary functional F [u] is
defined as

F [u] =

∫
D

Φu(x) · u(x, t) dΩ, (4.8)
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where Φu ∈ Y and

Y = {Φ ∈ (L2(D))3 : ni ·Φ = 0 at ∪5
i=1 ∂Di}, (4.9)

with ni the normal vector at the boundary ∂Di and L2 the space of square
integrable functions. The condition in (4.9) implies that variations of the
normal component of the velocity field at the solid wall boundaries ∪5

i=1∂Di

must be zero. Further, we employ an additional restriction on the arbitrary
functional F to incorporate the free surface boundary condition

∂F
∂ρ

=
1

ρ

∂F
∂h

at Γh. (4.10)

Conditions (4.9) and (4.10) concern any functional present in the definition
of the Hamiltonian dynamics, including the energy functional H. The solid
wall restriction (4.9) in the context of the Hamiltonian energy functional
(4.3) is equivalent to u · ni = 0 at the boundary ∂Di. Similarly, the free
surface restriction (4.10) for the Hamiltonian energy functional is equiva-
lent to (4.1d) at the free surface Γs. As it follows from the latter, both
restrictions presented at the functional level are also natural at the PDE
level.

The definition of the Poisson bracket (4.7), in combination with the
Hamiltonian functional H (4.3) and the essential no-flow boundary condi-
tions (4.9), complete our Hamiltonian description of a nonlinear, inviscid
compressible flow with a free surface in a rotating reference frame.

Next, we verify that the conjectured Hamiltonian system, given by (4.3),
(4.7) and (4.9)-(4.10), leads to the compressible Euler equations (4.1a)-
(4.1b), with free surface boundary conditions (4.1c)-(4.1d).

Firstly, the momentum equations (4.1a) are obtained by taking the func-
tional F = F [u], defined in (4.8), together with the functional derivatives
(4.5) of the Hamiltonian H,

dF [u]

dt
=

∫
D

[(1

2
|u|2 + (ρU)ρ + gz

)
∇ · δF [u]

δu

−(2Ω + ∇× u)× u · δF [u]

δu

]
dΩ

+

∫
Γs
−1

ρ

δH
δh

δF [u]

δu
· n̂s dS. (4.11)

Integration by parts with subsequent restriction of the variations of the
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functional F [u] at ∪5
i=1∂Di using (4.9) yields

dF [u]

dt
=−

∫
D

(
∇
[1

2
|u|2 + (ρU)ρ + gz

]
+ (2Ω + ∇× u)× u

)
· δF [u]

δu
dΩ

+

∫
Γs

δH
δρ

δF [u]

δu
· n̂s dS −

∫
Γs

1

ρ

δH
δh

δF [u]

δu
· n̂s dS. (4.12)

This expression can be further evaluated using the identities (u ·∇)u =
∇(1/2|u|2)− u× (∇× u), P/ρ = ρUρ and the boundary condition (4.10)
at the free surface. The momentum equation (4.1a) is then obtained using
the fact that the test function Φu in the functional derivative of F [u] is
arbitrary.

Similarly, the continuity equation (4.1b) is obtained if the functional F
is taken as

F [ρ] =

∫
D

Φ(x, t)ρ(x, t) dΩ, (4.13)

where Φ ∈ L2(D).
Finally, the free surface equation (4.1c) is obtained if the functional F

is taken as

F [h] =

∫
Γs

Φs(x, y, t)h(x, y, t)dS, (4.14)

with Φs ∈ L2(Γs). This shows that the inviscid compressible Euler equa-
tions in a rotating domain with a free surface and solid boundaries (4.1)
are obtained from the Hamiltonian system (4.3),(4.7).

4.3 Derivation of Hamiltonian structure

via Clebsch variables

In this section the Hamiltonian system (4.3),(4.7) for nonlinear free
surface flow is derived from a variational principle. We start with a La-
grangian functional for the three-dimensional nonlinear Euler equations.
After some lengthy calculations the Lagrangian functional is transformed
from non-canonical Eulerian variables to a canonical Clebsch variable rep-
resentation. Next, the Poisson bracket in canonical Clebsch variables is
stated using an action principle applied to the Lagrangian functional (e.g.
see [92]). Finally, a reduction from canonical Clebsch variables to non-
canonical Eulerian variables (velocity u, density ρ and free surface height
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h) results in the Poisson bracket which was conjectured in (4.7). In or-
der to reduce the complexity we do not include the background rotation
in the derivations below, but the analysis can be extended to include also
this term. We start with a Lagrangian variational principle for the three-
dimensional nonlinear Euler equations with a free surface. As usual, the
Lagrangian functional L is taken to be the following algebraic expression

L(u, ρ) =

∫
D(t)

1

2
ρ|u|2 − ρU(ρ)− ρgz dxdydz (4.15)

consisting of the kinetic, internal and potential energy. Here, the density
ρ is the Jacobian between the Eulerian coordinates x = (x, y, z) and the
Lagrangian label coordinates l = (l1, l2, l3)T for a fluid parcel, such that
ρ dx dy dz = dl1 dl2 dl3. Using Lin constraints [58] as in [24] the Lagrangian
functional (4.15) is now extended to include a number of constraints, viz.
the mass conservation equation, the label-particle displacement equation
and the kinematic free surface boundary condition, which states that a
fluid particle at the free surface stays at the free surface. The Lagrangian
functional then is equal to

L(u, l,π, ρ, φ, h) =

∫
D(t)

1

2
ρ|u|2 − ρU(ρ)− gρz + φ(∂tρ+ ∇ · (ρu))

− ρπ · (∂tl+ (u ·∇)l) dxdydz

+

∫
Γh

λ(∂th− us · ns) dxdy, (4.16)

with l = l(x, y, z, t) the Lagrangian fluid labels in the Eulerian frame-
work. The variables φ = φ(x, t), π = π(x, t) and λ = λ(x, y, t) are the
Lagrange multipliers to enforce the constraints given by the mass conser-
vation equation, the label-particle displacement equation, and the kine-
matic free surface boundary condition. We also introduce the notation
us(x, y, t) = u(x, y, h(x, y, t) + b(x, y)), with a similar relation for ρs, to
express variables at the free surface.
The action principle now states that the variations of the Lagrangian func-
tional have to be zero

0 = δ

∫ T

0
L(u, l,π, ρ, λ, φ, h) dt. (4.17)

After calculating the variations of the Lagrangian functional with re-
spect to u, using the arbitrariness of δu and (δu)s, the variations of u at
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the free surface, and the fact that δu · ni = 0 at ∪5
i=1∂Di, we obtain the

following expressions for the velocity u and the Lagrange multiplier λ

u = ∇φ+ (∇l)Tπ ≡∇φ+ v in D × (0, T ), (4.18a)

λ = φρ at Γh × (0, T ). (4.18b)

Here we introduced the rotational velocity v, but note that v is not an
independent variable in the calculation of the variations. Next, we eliminate
the velocity u and Lagrange multiplier λ from (4.16) by using (4.18) in
(4.17). The Lagrangian functional then is equal to

L(l,π, ρ, φ, h) =∫
D

[
1

2
ρ|∇φ+ v|2 − ρU(ρ)− gρz + φ[∂tρ+ ∇ · (ρ(∇φ+ v))]

− ρπ · [∂tl+ (∇φ+ v) ·∇l]

]
dxdydz

+

∫
Γh

ρφ[∂th− (∇φ+ v) · ns] dxdy. (4.19)

Application of the theorems of Gauss and Leibnitz and using the fact that
u · ni = 0 at ∪5

i=1∂Di, we can transform the right hand side of (4.19) into∫
Γh

∫ h+b

b

1

2
ρ|∇φ+ v|2 − ρU(ρ)− gρz − ρ∇φ · (∇φ+ v) dxdydz+

d

dt

∫
Γh

∫ h+b

b
(φρ) dxdydz −

∫
Γh

∫ h+b

b
ρ∂tφ dxdydz−∫

Γh

φsρs∂th− φsρs(∇φ+ v)s · ns dxdy−∫
Γh

∫ h+b

b
ρπ · (∂tl+ (∇φ+ v) ·∇l) dxdydz+∫

Γh

φsρs(∂th− (∇φ+ v)s · ns) dxdy. (4.20)

Cancellation of terms with opposite sign in (4.20) results in the following
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action functional∫ T

0
L(l,π, ρ, φ, h) dt =

∫ T

0

∫
Γh

∫ h+b

b
−1

2
ρ|∇φ+ v|2 − ρU(ρ)− gρz

− ρ∂tφ− ρπ · (∂tl) dxdydz dt

+

∫
Γh

∫ h+b

b
φρ|T0 dxdydz. (4.21)

The second integral in (4.21) is zero by imposing that the variation of ρφ
is zero at the times t = 0 and t = T .

The action functional can now be expressed as∫ T

0
L(l,π, ρ, φ, h) dt =

∫ T

0

∫
Γh

∫ h+b

b

1

2
ρ|∇φ+ v|2 + ρU(ρ) + gρz

+ρ∂tφ+ ρπ · ∂tl dxdydz dt. (4.22)

From the latter, it follows that Hamiltonian energy functional has the fol-
lowing representation in Clebsch variables

H =

∫
Γh

∫ h+b

b

1

2
ρ|∇φ+ v|2 + ρU(ρ) + gρz dxdydz. (4.23)

The Euler equations and the free surface dynamics in Clebsch variables are
obtained by applying the action principle to (4.22). A detailed derivation
is deferred to Appendix 4.6.1. The utilisation of the arbitrariness of varia-
tions in the resulting action principle (4.66) yields the corresponding PDEs.
Variations with respect to the density ρ yield

δρ : ∂tφ = −
(

1

2
|∇φ+ v|2 + (ρU)ρ + gz − v · u

)
, (4.24a)

and the other variations give

δφ : ∂tρ = −∇ · (ρu), (4.24b)

δ(ρπ) : ∂tl = −(u ·∇)l, (4.24c)

δlj : ∂t(ρπj) = −∇ · (ρπju), (4.24d)

(δφ)s : ρs∂th = ρsus · ns, (4.24e)

(δh) : ρs∂t(φ)s = −ρs
[

1

2
|u|2 +

(ρU)ρ
ρs

+ gz − u · nsπ · ∂zl
]
s

. (4.24f)
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4.3. Derivation of Hamiltonian structure via Clebsch variables

From (4.24) it is evident that the pairs of variables {ρ, φ}, {ρπ, l} and
{φs, h} are canonically conjugated. The latter enables a new representation
of the system (4.24) in terms of Hamilton’s equations

δρ : ∂tφ = −δH
δρ
, (4.25a)

δφ : ∂tρ =
δH
δφ

, (4.25b)

δ(ρπ) : ∂tl =
δH
δ(ρπ)

, (4.25c)

δlj : ∂t(ρπj) = −δH
δlj

, (4.25d)

(δφ)s : ∂th =
1

ρ s

(
δH
δφ

)
s

, (4.25e)

(δh) : ∂t(φ)s = −1

ρ s

δH
δh

, (4.25f)

where in the last equation the boundary condition (4.10) for H is used.
Combining the corresponding canonical pairs we can form the canonical
Poisson bracket

{F ,H} =

∫
D

δF
δρ

δH
δφ
− δH
δρ

δF
δφ

+
δH
δl
· δF
δ(ρπ)

− δF
δl
· δH
δ(ρπ)

dΩ

+

∫
Γh

1

ρ s

[(
δH
δφ

)
s

δF
δh
−
(
δF
δφ

)
s

δH
δh

]
dx dy.

(4.26)

Since the ρs multiplier is constant at the free-surface (density is constant
at the free surface [40]), the bracket (4.26) is a canonical Poisson bracket,
which automatically implies that all identities from (1.2) are satisfied, in-
cluding the Jacobi identity.

The next step is to relate the Poisson bracket in Clebsch variables to
the Poisson bracket in Eulerian variables (4.7), which we conjectured in
Section 4.2. Since the Poisson bracket in Clebsch variables (4.26) is anti-
symmetric and satisfies all identities from (1.2) we then have proven these
relations also for the conjectured Poisson bracket (4.7).

For the transformation of the canonical Poisson bracket in the Clebsch
variables (ρ, φ), (l, ρπ), (φs, h) to the Eulerian variables ρ,u, and h, we need
to relate functional derivatives in Clebsch variables to functional derivatives
in Eulerian variables. For this we apply the functional derivative chain rule.
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Nonlinear dynamics

The variation of an arbitrary functional F expressed in terms of Clebsch
variables is equal to

δF =

∫
D

δF
δρ
δρ+

δF
δφ
δφ+

δF
δl
· δl+

δF
δ(ρπ)

· δ(ρπ) dΩ

+

∫
Γh

(
δF
δφ

)
s

δφs +
δF
δh
δh dxdy. (4.27)

Taking into account that δ(ρπ) = ρδπ + πδρ we can transform (4.27) into

δF =

∫
D

(
δF
δρ

+
δF
δ(ρπ)

· π
)
δρ+

δF
δφ
δφ+

δF
δl
· δl+

δF
δ(ρπ)

· δ(π)ρ dΩ

+

∫
Γh

(
δF
δφ

)
s

δφs +
δF
δh
δh dxdy. (4.28)

Similarly, variations of the functional F in terms of the non-canonical Eu-
lerian variables are equal to

δF =

∫
D

δF
δρe

δρe +
δF
δu
· δu dΩ +

∫
Γh

δF
δhe

δhe dxdy. (4.29)

To avoid confusion where any Clebsch variable coincides with an Eulerian
variable, an ‘e’ superscript is introduced to indicate that it belongs to the
Eulerian set.

Substitution of the identity u = ∇φ+ πj∇lj into (4.29) yields

δF =

∫
D

δF
δρe

δρe +
δF
δu
· (∇δφ+ δπj∇lj + πj∇δlj) dΩ +

∫
Γh

δF
δhe

δhe dxdy

=

∫
D

δF
δρe

δρe + ∇ ·
(
δF
δu

δφ

)
−∇ ·

(
δF
δu

)
δφ

+

(
δF
δu

)
· δπj∇lj + ∇ ·

(
δF
δu
· πjδlj

)
−∇ ·

(
δF
δu

πj

)
δlj dΩ

+

∫
Γh

δF
δhe

δhe dxdy. (4.30)

Using the Gauss divergence theorem on the derivatives of the variational
derivatives in combination with the solid wall boundary conditions we can
transform this relation into

δF =

∫
D

δF
δρe

δρe −∇ · δF
δu

δφ+

(
δF
δu

)
· δπj∇lj −∇ ·

(
δF
δu

πj

)
δlj dΩ

+

∫
Γh

(
δF
δu

)
s

· ns(δφ)s +

(
δF
δu

πjδlj

)
s

· ns +
δF
δhe

δhe dxdy.

(4.31)
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4.3. Derivation of Hamiltonian structure via Clebsch variables

If we compare now equivalent variations in (4.28) and (4.31) we obtain the
following relations between functional derivatives in Clebsch and Eulerian
variables

δF
δρ

=
δF
δρe
− πj
ρe

(
δF
δu

)
·∇lj , (4.32a)

δF
δφ

= −∇ · δF
δu

, (4.32b)(
δF
δl

)
j

= −∇ ·
(
δF
δu

πj

)
, (4.32c)(

δF
δ(ρπ)

)
j

=
1

ρe
δF
δu
·∇lj , (4.32d)(

δF
δφ

)
s

=

(
δF
δu

)
s

· ns, (4.32e)

δF
δh

=
δF
δhe

, (4.32f)

where we used the fact that variation of Lagrangian labels at the free surface
is zero, (δlj)s = 0.

Substitution of (4.32) in (4.26), while dropping the superscripts, leads
to a new Poisson bracket based on functional derivatives in Eulerian vari-
ables

{F ,H} =

∫
D

(
δH
δρ
− πj

ρ

δH
δu
·∇lj

)
∇ · δF

δu
−
(
δF
δρ
− πj

ρ

δF
δu
·∇lj

)
∇ · δH

δu

−∇ ·
(
δH
δu

πj

)
1

ρ

δF
δu
·∇lj + ∇ ·

(
δF
δu
· πj
)

1

ρ

δH
δu

∇lj dΩ

+

∫
Γh

1

ρs

[(
δH
δu

)
s

· ns
δF
δh
−
(
δF
δu

)
s

· ns
δH
δh

]
dxdy. (4.33)

Combining similar terms, we can write the Poisson bracket (4.33) as∫
D

δH
δρ

∇ · δF
δu
− δF
δρ

∇ · δH
δu

dΩ+∫
D
−
(
πj
ρ

δH
δu
·∇lj

)(
∇ · δF

δu

)
+

(
πj
ρ

δF
δu
·∇lj

)(
∇ · δH

δu

)
−∇ ·

(
δH
δu

πj

)(
1

ρ

δF
δu
·∇lj

)
+ ∇ ·

(
δF
δu

πj

)(
1

ρ

δH
δu
·∇lj

)
dΩ+∫

Γh

1

ρs

(
δH
δu

δF
δh
− δF
δu

δH
δh

)
s

· ns dxdy. (4.34)
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In (4.34) we can already recognise the first two terms in the Poisson bracket
(4.7). After some algebraic manipulations we obtain for the second integral
in (4.34) the following expression∫
D
−
(
πj
ρ

δH
δu

∇lj

)(
∇ · δF

δu

)
+

(
πj
ρ

δF
δu
·∇lj

)(
∇ · δH

δu

)
−∇ ·

(
δH
δu

πj

)(
1

ρ

δF
δu
·∇lj

)
+ ∇ ·

(
δF
δu

πj

)(
1

ρ

δH
δu
·∇lj

)
dΩ

(4.35a)

=

∫
D

1

ρ

[(
δF
δu

)
k

∇k (πj∇ilj)
(
δH
δu

)
i

−
(
δH
δu

)
k

∇k (πj∇ilj)
(
δF
δu

)
i

]
dΩ.

(4.35b)

The details of this derivation are provided in the Appendix 4.6.2. This
relation is exactly the second, vortical contribution, in the Poisson bracket
(4.7) ∫

D

∇× u

ρ
· δH
δu
× δF
δu

dΩ. (4.36)

Combining all terms in (4.34) gives then the Poisson bracket in non-
canonical Eulerian variables that we conjectured in Section 4.2

{F ,H} =

∫
D

δH
δρ

∇ · δF
δu
− δF
δρ

∇ · δH
δu

+
∇× u

ρ
· δH
δu
× δF
δu

dΩ

+

∫
Γs

1

ρs

[
δH
δu

δF
δh
− δF
δu

δH
δh

]
· n̂s dS. (4.37)

Since in every step of the derivation all identities from (1.2) are satisfied
for the intermediate Poisson brackets, this also applies to the final result,
the Poisson bracket (4.37), which is the same as the Poisson bracket (4.7),
which was conjectured in Section 4.2.

4.4 Linearised Hamiltonian framework

4.4.1 Governing equations

Next, we introduce a linearisation of the compressible Euler equations
(4.1) around a rest state (u0 = 0, ρ0(z), h0 = 0) with u = u0 + ū, ρ =
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4.4. Linearised Hamiltonian framework

ρ0(z) + ρ̄, P = P0(z) + P̄ and h = 0 + h̄, where ū(x, y, z, t), ρ̄(x, y, z, t),
P̄ (x, y, z, t) and h̄(x, y, t) are, respectively, a small perturbation velocity,
density, pressure and free surface height. Note, that at the rest state the
background velocity u0 and free surface height h0 are zero, and the back-
ground density ρ0(z) is z-dependent only. Additionally, the time dependent
domain D transforms into the time independent domain D̄ with a mean
free surface Γ̄s at the top, where Γ̄s (z = 0 plane) is the linearised version
of the free surface Γs.

The nonlinear pressure is proportional to the density, due to the barotropic
pressure Ansatz, and thus, the following nonlinear equation of state is
adapted

P = Pc + c2
0(ρ− ρs). (4.38)

where c0 is the acoustic (constant) wave speed and ρs is the constant density
at the free surface (ρ|z=0 = ρs). Due to the linearisation (4.38) becomes

P ∼= Pc + c2
0(ρ0(z)− ρs) + c2

0ρ̄. (4.39)

From the latter it follows that the rest state pressure is equal to
P0(z) = Pc + c2

0(ρ0(z)− ρs) and the perturbation pressure P̄ = c2
0ρ̄.

Further, the hydrostatic balance equation at the rest state,
(u0 = 0, ρ0(z), h0 = 0, P0), is as follows

−∇
(
Pc + (c2

0ρ0(z)− ρs)
)

+ ρ0g = 0, (4.40)

with g = (0, 0,−g)T . The background density is stratified only in the
z-direction, thus we have

−c2
0

dρ0(z)

dz
= ρ0g. (4.41)

Taking into account (4.41) and the boundary condition at the free surface
(ρ0|z=0 = ρs) the following profile for the background density can be derived

ρ0 = ρs exp(−gz/c2
0). (4.42)

The linearisation applied to the nonlinear Euler equations (4.1) results
in the linear compressible Euler equations with a free surface

ρ0
∂ū

∂t
= −∇(c2

0ρ̄)− 2Ω× ū + ρ̄g, (4.43a)

∂ρ̄

∂t
= −∇ · (ρ0ū), (4.43b)

∂h̄

∂t
= w̄s at z = 0, (4.43c)
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where w̄s = u · n̄s is the third component of the velocity at the free surface
and n̄s = (0, 0, 1) is a linearised version of the non-linear free surface normal
n̂s.

A Taylor expansion of the nonlinear pressure P (x, y, z = h, t) around
z = 0 results in

P (x, y, z = h, t) ∼= P (x, y, z = 0, t) +
dP0(z)

dz
|z=0h̄ = Pc, (4.44)

and due to the linearisation we have

P (x, y, z = 0, t) = P0(z)|z=0 + P̄ (x, y, z = 0, t), (4.45)

where P0(z) is the hydrostatic pressure at the rest state, since P0|z=0 = Pc.
The latter results in

−dP0(z)

dz
|z=0h̄ = P̄ (x, y, z = 0, t), (4.46)

which, in combination with (4.41) and the expression for the rest state
pressure P̄0(z) = Pc + c2

0(ρ0(z)− ρs), is further transformed into

c2
0ρ̄ ≡ P̄ = ρsgh̄ at z = 0. (4.47)

The resulting expression (4.47) is the boundary condition for the perturba-
tion pressure at the free surface.
A similar boundary condition for the pressure at the bottom can be derived
if the linearised momentum equation from (4.43a) is multiplied by a normal
to a bottom topography n̄b

∇(c2
0ρ̄) · n̄b = ρ̄g · n̄b. (4.48)

An alternative representation of (4.43), (4.43a), can be derived if the
product rule of differentiation is applied in combination with the hydro-
static balance equation (4.40)

∂ū

∂t
= −∇

(
c2

0

ρ0
ρ̄

)
− 2Ω

ρ0
× ū, (4.49a)

∂ρ̄

∂t
= −∇ · (ρ0ū), (4.49b)

∂h̄

∂t
= w̄s at z = 0. (4.49c)
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4.4. Linearised Hamiltonian framework

4.4.2 Hamiltonian formalism for linearised com-
pressible flow

In this section, the Hamiltonian formulation for linear compressible
fluid flow in a domain D̄ is introduced. The connection with corresponding
linear PDE based model (4.43) is also discussed.

The Hamiltonian formulation for linear compressible fluid flow governed
by (4.43) in the domain D̄ is described as follows

dF
dt

= {F ,H} =

∫
D̄

δH
δρ̄
∇ · δF

δū
− δF
δρ̄
∇ · δH

δū
+

2Ω

ρ0
· δF
δū
× δH
δū

dΩ

+

∫
Γ̄s

1

ρs

[
δF
δh̄

n̄s ·
δH
δū
− δF
δū
· n̄s

δH
δh̄

]
z=0

dS, (4.50a)

with Hamiltonian energy functional

H = H[ū, ρ̄, h̄] ≡
∫
D̄

1

2
ρ0|ū|2 +

c2
0

2ρ0
ρ̄2dΩ +

∫
Γ̄s

[
1

2
ρsgh̄

2

]
z=0

dS. (4.50b)

The latter Hamiltonian formulation is a free surface extension of the linear
Hamiltonian formulation discussed in Chapter 2 and a linearised version of
the Hamiltonian formulation stated in (4.7).

The definition of the functional derivative of the Hamiltonian H is as
follows

δH ≡ lim
ε→0

H[ū + εδū, ρ̄+ εδρ̄, h̄+ εδh̄]−H[ū, ρ̄, h̄]

ε
=∫

D̄

δH
δū
· δū +

δH
δρ̄
δρ̄ dΩ +

∫
Γ̄s

[
δH
δh̄

δh̄

]
z=0

dS. (4.51)

Hence, the functional derivatives of H are equal to

δH
δū

= ρ0ū,
δH
δρ̄

=
c2

0

ρ0
ρ̄,

δH
δh̄

= ρsgh̄ at Γ̄s. (4.52)

The linear Poisson bracket stated above satisfies all required properties
defined in (1.2): skew-symmetry can be recognised from the structure of
the bracket; the bracket is bilinear, thus the linearity and Leibniz identity
are automatically satisfied; and, the Jacobi identity can be checked directly.
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Next, the equivalence between the Hamiltonian formulation (4.50) and
the PDE representation (4.43) of compressible fluid flow in the domain D̄
is shown.

The momentum, continuity and free surface dynamics equations are
obtained if the following functionals are chosen

Fū ≡
∫
D̄

ū(x, t) ·Φ(x)dΩ, (4.53a)

Fρ̄ ≡
∫
D̄
ρ̄(x, t)φ(x)dΩ, (4.53b)

Fh̄ ≡
∫

Γ̄s

h̄(x, t)φs(x)dS, (4.53c)

with Φ ∈ Ȳ, φ ∈ Q̄ and φs = Φ · n̄s arbitrary test functions, where

Q̄ = {φ ∈ L2(D̄)} , Ȳ = {Φ ∈ (L2(D̄))3 : n ·Φ = 0 at ∪5
i=1 ∂D̄i}, (4.54)

and L2(D̄) is the space of square integrable functions on D̄. To incorpo-
rate the appropriate boundary conditions at ∪5

i=1∂D̄i we restrict the space
for the test functions Φ at the solid-wall boundaries, whereas for the free
surface boundary condition the functional F is restricted as follows

δF
δρ̄

=
1

ρs

δF
δh̄
. (4.55)

In particular, for the Hamiltonian energy functional H the latter restriction
results in

δH
δρ̄
− 1

ρs

δH
δh̄
≡ c2

0

ρs
ρ̄− 1

ρs
ρsgh̄ = 0, (4.56)

which exactly coincides with the free surface boundary condition for the
pressure (4.47).

The corresponding functional derivatives of (4.53a), (4.53b) and (4.53c)
are given as follows

δFū

δū
= Φ(x), with

δFū

δū
· n̄i = 0 at ∪i ∂Di

δFρ̄
δρ̄

= φ(x),
δFη
δh̄

= φs(x). (4.57)

Using functionals (4.53b) and (4.53c) with corresponding functional deriva-
tives (4.57) and (4.52), in the bracket formulation (4.50a), the equations of
the continuity (4.49b) and free surface dynamics (4.49c) are obtained.
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In contrast to the latter, derivation of the momentum equation is less
straightforward. After the functional (4.53a) is substituted into the bracket
(4.50a) and integration by parts on the first term is performed, we arrive
at

d

dt

∫
D̄

ū ·Φ dΩ =−
∫
D̄
∇
(
c2

0

ρ0
ρ̄

)
·Φ +

2Ω

ρ0
× ū ·Φ dΩ +

∫
∂D̄/Γ̄s

δH
δρ̄

Φ · n̄dΓ

−
∫

Γ̄s

[(δH
δρ̄
− 1

ρs

δH
δh̄

)]
Φ · n̄sdS. (4.58)

The arbitrary test function Φ is a constituent of Ȳ, thus the first boundary
integral can be set to zero. The second boundary integral is also zero due
to the introduced restriction on the functionals (4.55).

Finally, using the arbitrariness of test function Φ we get

dū

dt
= −∇

(
c2

0

ρ0
ρ̄

)
− 2Ω

ρ0
× ū, (4.59)

which coincides exactly with the momentum equation in (4.49), the alter-
native representation of (4.43). The latter ensures the correspondence of
the Hamiltonian formulation (4.50) to the linear Euler equations (4.43).

4.5 Discussion and future plans

A nonlinear Hamiltonian formulation for the Euler equations describing
an inviscid compressible fluid flow in a rotating domain with a free-surface
and solid walls was presented. First, a corresponding (generalised) Poisson
bracket and Hamiltonian functional were conjectured, and, as an initial
verification step, the nonlinear Euler equations with a free surface were
derived from it. Next, the conjectured Poisson bracket was derived starting
from a variational principle using the following steps: (i) a Lagrangian
functional was introduced expressed in terms of Eulerian variables; (ii) the
Lagrangian functional in Eulerian variables was subsequently transformed
into a Lagrangian functional in Clebsch canonical variables; (iii) an action
principle was applied to the transformed Lagrangian, which resulted in
a canonical Poisson bracket in Clebsch variables and (iv) the canonical
Poisson bracket in the canonical Clebsch variables was reduced to a Poisson
bracket in Eulerian variables. This derivation ensured satisfaction of the
Jacobi identity in every step in the derivation, and thus, the (generalised)
Poisson bracket, which was originally conjectured, also satisfies the required
Jacobi identity.
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Additionally, a linear Hamiltonian formulation for a compressible fluid
flow in a domain with a free surface was introduced. The presented for-
mulation was derived by applying perturbation theory on the nonlinear
equations introduced earlier. Furthermore, the linear Hamiltonian formal-
ism was demonstrated to be a free surface extension of the Hamiltonian
formulation discussed in Chapter 2

The next step will be to develop a numerical discretisation based on the
newly derived (non)linear Hamiltonian formulation followed by the Dirac
technique discussed in Chapter 2 to obtain a Hamiltonian discretisation
of the incompressible Euler equations with a free surface. In both linear
and nonlinear case, the main difficulty of the discretisation is in the sat-
isfaction of boundary conditions at the free surface. Also, the numerical
flux functions should be such that the resulting DGFEM discretisation is
nonetheless a Hamiltonian system.

4.6 Appendix

4.6.1 Calculation of the variations of the
Lagrangian

The detailed calculation of the variation of the Lagrangian (4.22) is
given below.

0 = δ

∫ T

0
L(l,π, ρ, φ, h)dt =∫ T

0

∫
Γh

∫ h+b

b
ρ(∇φ+ v) · δ(∇φ+ v) +

1

2
|∇φ+ v|2δρ+ gzδρ+ (ρU)ρδρ

+ δ(ρ∂tφ) + δ(ρπ) · ∂tl+ ρπ · ∂tδl dxdydz

+

∫
Γh

[
1

2
ρ|∇φ+ v|2 + ρgz + ρ∂tφ+ ρπ · (∂tl)

]
s

δh dxdy dt, (4.60)
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where, after combining terms with the same variation the right hand side
of (4.60) can be written as∫ T

0

∫
Γh

∫ h+b

b
ρ(∇φ+ v) · (∇δφ+ δπj∇lj + πj∇(δlj)) + ρ∂t(δφ)

+ δ(ρπ) · ∂tl+ ρπ · ∂tδl+

(
1

2
|∇φ+ v|2 + (ρU)ρ + gz + ∂tφ

)
δρ dxdydz

+

∫
Γh

[
1

2
ρ|∇φ+ v|2 + ρgz + ρ∂tφ+ ρπ · (∂tl)

]
s

δh dxdy dt. (4.61)

The next step is to remove derivatives of the variations by integrating by
parts, resulting in∫ T

0

∫
Γh

∫ h+b

b
−∇ · (ρ(∇φ+ v))δφ dxdydz

+

∫
Γh

(δφ)sρs((∇φ+ v)s) · ns dxdy

+

∫
Γh

∫ h+b

b
δ(ρπj)(∇lj · (∇φ+ v))− δρ(πj(∇φ+ v) ·∇lj)

− δlj∇ · (ρ(∇φ+ v)πj) dxdydz

+

∫
Γh

ρs(∇φ+ v)s(πj)s · ns(δlj)s dxdy

+

∫
Γh

∫ h+b

b

(
1

2
|∇φ+ v|2 + (ρU)ρ + gz + ∂tφ

)
δρ dxdydz

+
d

dt

∫
Γh

∫ h+b

b
ρδφ dxdydz −

∫
Γh

∫ h+b

b
δφ∂tρ dxdydz

−
∫

Γh

ρs(δφ)s∂th dxdy +

∫
Γh

∫ h+b

b
δ(ρπ) · (∂tl) dxdydz

+
d

dt

∫
Γh

∫ h+b

b
ρπ · δl dxdydz −

∫
Γh

∫ h+b

b
δl · ∂t(ρπ) dxdydz

−
∫

Γh

ρsπs · (δl)s∂th

+

[
1

2
ρ|∇φ+ v|2 + (ρU)ρ + ρgz + ρ∂tφ+ ρπ · (∂tl)

]
s

δhdxdydt.

(4.62)
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Here, the Gauss divergence theorem was used on the following contributions

∫
D
ρ(∇φ+ v) ·∇(δφ) dΩ =

∫
Γs

(δφ)sρs(∇φ+ v)s · n̂s dS

−
∫
D
∇ · (ρ(∇φ+ v))δφ dΩ, (4.63a)∫

D
ρ(∇φ+ v) · πj∇(δlj)dΩ =

∫
Γs

(δlj)sρs(∇φ+ v)s(πj)s · n̂s dS

−
∫
D
∇ · (ρ(∇φ+ v)πj)δlj dΩ, (4.63b)

where the solid wall boundary condition is applied at ∪5
i=1∂Di and the

Einstein summation convention is used on repeated indices. Since the free
surface h depends on time, viz. h = h(x, y, t), we have applied the Leibnitz
theorem to the following integrals∫ h+b

b
ρ
∂

∂t
(δφ) dz =

d

dt

∫ h+b

b
ρδφ dz −

∫ h+b

b
δφ∂tρdz − ρs(δφ)s∂th,

(4.63c)∫ h+b

b
ρπ · ∂

∂t
(δl) dz =

d

dt

∫ h+b

b
ρπ · δl dz

−
∫ h+b

b
δl · ∂t(ρπ) dz − ρsπs · (δl)s∂th (4.63d)

A further simplification of (4.62) is obtained via integration by parts
and using the Gauss divergence theorem. Collecting contributions with the
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same variation and integrating by parts again, finally results in∫ T

0

∫
Γh

∫ h+b

b

(
1

2
|∇φ+ v|2 + (ρU)ρ + gz + ∂tφ− πj(∇φ+ v) ·∇lj

)
δρ

−
(
∇ · (ρ(∇φ+ v)) + ∂tρ

)
δφ

+
(

(∇φ+ v) ·∇lj + ∂tlj

)
δ(πjρ)

−
(
∇ · (ρπj(∇φ+ v)) + ∂t(ρπj)

)
δlj dxdydz dt

+

∫
Γh

∫ h+b

b
ρπ · δl|T0 + δ(ρφ)|T0 dxdydz

+

∫ T

0

∫
Γh

ρs ((∇φ+ v)s · ns − ∂th) (δφ)s

+ ((ρπ)s(∇φ+ v)s · ns − (ρπ)s∂th) · (δl)s

+

[
1

2
ρ|∇φ+ v|2 + (ρU)ρ + ρgz + ρ∂tφ+ ρπ · (∂tl)

]
s

δh dxdy dt.

(4.64)

Equation (4.63d) can be used to connect the variations (δl)s and (∂tl)s
at the free-surface h = h(x, y, t) and after assuming that δl|T0 = 0 and
δ(ρφ)|T0 = 0 at the end points gives the expression∫ T

0

∫
Γh

∫ h+b

b

(
1

2
|∇φ+ v|2 + (ρU)ρ + gz + ∂tφ− πj(∇φ+ v) ·∇lj

)
δρ

−
(
∇ · ρ(∇φ+ v) + ∂tρ

)
δφ+

(
(∇φ+ v)∇lj + ∂tlj

)
δ(πjρ)

−
(
∇ · (ρπj(∇φ+ v)) + ∂t(ρπj)

)
δlj dxdydz

+

∫
Γh

ρs

(
(∇φ+ v)s · ns − ∂th

)
(δφ)s

−
(
ρsπs(∇φ+ v)s · ns − ρsπs∂th

)
· [δh∂zl]s +[

1

2
ρ|∇φ+ v|2 + (ρU)ρ + ρgz + ρ∂tφ

]
s

δh+ ρsπs · [−∂th∂zl]s δh dxdy dt.

(4.65)

Cancelling terms with opposite sign then yields the action principle in Cleb-
sch variables

114



Nonlinear dynamics

∫ T

0

∫
Γh

∫ h+b

b

(
1

2
|∇φ+ v|2 + (ρU)ρ + gz + ∂tφ− πj(∇φ+ v)∇lj

)
δρ

−
(
∇ · ρ(∇φ+ v) + ∂tρ

)
δφ+

(
(∇φ+ v)∇lj + ∂tlj

)
δ(πjρ)

−
(
∇ · (ρπj(∇φ+ v)) + ∂t(ρπj)

)
δlj dxdydz

+

∫
Γh

ρs

(
(∇φ+ v)s · ns − ∂th

)
(δφ)s+(1

2
ρ|∇φ+ v|2 + (ρU)ρ + ρgz + ρ∂tφ− ρ(∇φ+ v) · nsπ · ∂zl

)
s
δh dxdy dt.

(4.66)

From the arbitrary variations for δρ, δφ, δ(πjρ), δlj , (δφ)s and δh the
corresponding PDEs given in (4.24) are derived.

4.6.2 Rotational velocity

In this Appendix we give a detailed description of the algebraic manip-
ulations on (4.35a) that will result in (4.35b).

After integration by parts of every term on the left hand side in (4.35a)
we obtain the following relation∫

D
−∇ ·

(
δF
δu

πj
ρ
∇ilj

(
δH
δu

)
i

)
+

(
δF
δu

)
k

∇k
((

δH
δu

)
i

∇ilj
πj
ρ

)
+∇ ·

(
πj
ρ

(
δF
δu

)
i

∇ilj
δH
δu

)
−
(
δH
δu

)
k

∇k
(
πj
ρ

(
δF
δu

)
i

∇ilj
)

−∇ ·
(
δH
δu

πj
ρ

(
δF
δu

)
i

∇ilj
)

+

(
δH
δu

)
k

πj∇k
(

1

ρ

(
δF
δu

)
i

∇ilj
)

+∇ ·
(
δF
δu

πj
ρ
∇ilj

(
δH
δu

)
i

)
−
(
δF
δu

)
k

πj∇k
(

1

ρ

(
δH
δu

)
i

∇ilj
)
dΩ,

(4.67)

with ∇k = ∂/∂xk. We can further simplify (4.67) by cancelling contribu-
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tions with opposite sign, resulting in∫
D

(
δF
δu

)
k

∇k
((

δH
δu

)
i

∇ilj
πj
ρ

)
−
(
δH
δu

)
k

∇k
(
πj
ρ

(
δF
δu

)
i

∇ilj
)

+

(
δH
δu

)
k

πj∇k
(

1

ρ

(
δF
δu

)
i

∇ilj
)
−
(
δF
δu

)
k

πj∇k
(

1

ρ

(
δH
δu

)
i

∇ilj
)
dΩ.

(4.68)

After expanding the terms with ∇k using the product rule, the final result
is

∫
D

1

ρ

[(
δF
δu

)
k

∇k (πj∇ilj)
(
δH
δu

)
i

−
(
δH
δu

)
k

∇k (πj∇ilj)
(
δF
δu

)
i

]
dΩ.

(4.69)

Next, we will show that the expression (4.69) is the same as (4.35a).
Introducing the representation of the velocity in Clebsch variables

u = ∇φ+ πj∇lj and, subsequently, using the relations
∇×u = ∇×∇φ+∇× (πj∇lj) = ∇× (πj∇lj), (4.36) can be transformed
into∫
D

∇× u

ρ
· δH
δu
× δF
δu

dΩ =∫
D

1

ρ

(
[∂y(πj∇lj)3 − ∂z(πj∇lj)2]

[
−
(
δF
δu

)
2

(
δH
δu

)
3

+

(
δF
δu

)
3

(
δH
δu

)
2

]
+ [∂z(πj∇lj)1 − ∂x(πj∇lj)1]

[(
δF
δu

)
1

(
δH
δu

)
3

−
(
δF
δu

)
3

(
δH
δu

)
1

]
+

[∂x(πj∇lj)2 − ∂y(πj∇lj)1]

[
−
(
δF
δu

)
1

(
δH
δu

)
2

+

(
δF
δu

)
2

(
δH
δu

)
1

])
dΩ.

(4.70)
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Recombining, the various terms yields∫
D

1

ρ

(
−
(
δH
δu

)
i

∇k(πj∇lj)i

(
δF
δu

)
k

+

(
δH
δu

)
1

∂x(πj∇lj)1

(
δF
δu

)
1

+

(
δH
δu

)
2

∂y(πj∇lj)2

(
δF
δu

)
2

+

(
δH
δu

)
3

∂z(πj∇lj)3

(
δF
δu

)
3

+

(
δH
δu

)
k

∇k(πj∇lj)i
(
δF
δu

)
i

−
(
δH
δu

)
1

∂x(πj∇lj)1

(
δF
δu

)
1

−
(
δH
δu

)
2

∂y(πj∇lj)2

(
δF
δu

)
2

−
(
δH
δu

)
3

∂z(πj∇lj)3

(
δF
δu

)
3

)
dΩ,

(4.71)

which after cancellation of terms with opposite sign gives the same result
as (4.69)∫
D

1

ρ

[
−
(
δH
δu

)
i

∇k(πj∇lj)i

(
δF
δu

)
k

+

(
δH
δu

)
k

∇k(πj∇lj)i

(
δF
δu

)
i

]
dΩ.

(4.72)
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Chapter 5

Conclusions and
recommendations



Numerical models for wave propagation based on a variational or Hamil-
tonian formalism are in general preferable to models based on a purely
PDE representation. These numerical models are coordinate independent
and have a concise and exquisite structure. More importantly, they pre-
serve not only the mathematical structure of the problem, but also the
conservation laws associated with it and the phase space, in particular.
Careful discretisation of a model constructed on the basis of a variational
or Hamiltonian formalism may also preserve these nice properties at the
discrete level. Conservative numerical schemes are in general also more
robust and accurate, while in the case of variational or Hamiltonian based
discretisations the scheme inherits all these properties automatically. Nev-
ertheless, the downside of this approach is that preserving the variational
or Hamiltonian structure (which should exist and be derived, in the first
place) after numerical discretisation may not be an easy task.

In Chapter 2, a Hamiltonian based numerical model for linear
(in)compressible, inviscid fluid flow in a rotating domain was derived. First,
the corresponding Hamiltonian formalism for a compressible fluid was in-
troduced and carefully discretised to preserve the underlying conservation
properties. It is important to emphasise that the resulting DGFEM dis-
cretisation has been proven to have a Hamiltonian representation. Next, the
incompressible limit was achieved with an application of Dirac’s constrained
theory directly on the discrete Hamiltonian formalism for compressible fluid
flow. This is a novel way to account for the incompressibility constraint
in a DGFEM discretisation. Finally, a Hamiltonian structure preserving
symplectic space and time discretisation, with the modified midpoint time
integrator derived in [7], ensures the accurate and robust discretisation
of the various wave phenomena in compressible and incompressible fluids
considered in this chapter. The simulation of inertial waves in a rotating
rectangular parallelepiped was one of the important applications that was
discussed. The latter enabled an alternative route for studying the most
interesting property of inertial waves: the possibility of a chaotic wave
attractor formation in geometries with a broken symmetry.

Based on the continuous Hamiltonian formalism for incompressible fluid
flow in a rotating domain that was introduced in Chapter 2 several nu-
merical schemes could be derived. In case of DGFEM discretisations a
discrete Hamiltonian system can be obtained provided that the flux terms
and boundary conditions are chosen properly. Depending on these choices,
the resulting scheme may or may not coincide with the one presented in
Chapter 2. It should be emphasised that special attention should be paid
to the boundary conditions for a rotating domain, due to the mandatory re-
quirement of satisfaction of the geotropic balance in rotating systems. The
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latter is of direct relevance to preserving the symmetry of the problem.
In Chapter 3, a new semi-analytical solution for three-dimensional in-

ertial waves in a rotating rectangular parallelepiped was introduced, which
was compared with a semi-analytical solution available in the literature.
The advantages and disadvantages of both semi-analytical solutions were
discussed in full detail. It is worth to emphasise that the numerical so-
lution based on the algorithm discussed in Chapter 2 was more accurate
than the two alternative semi-analytical solutions discussed in Chapter 3.
The numerical solution in Chapter 2 was especially more accurate than the
semi-analytical solutions in two aspects: accuracy and robustness. Next
to the semi-analytical solutions, a discrete energy preserving FEM solution
for inertial waves in a rotating rectangular parallelepiped was introduced
to deal with the disadvantages of both semi-analytical solutions.

The semi-analytical techniques used in the Chapter 3, can be utilised
for a derivation of semi-analytical solutions of inertial waves in other sim-
ple geometries. The suggested FEM solution, by and large, is applicable
to more general domains. Thus, it will be useful for the computation of
eigenvalues and their corresponding eigenvectors for inertial waves in more
complex geometries.

In Chapter 4, a novel (non)linear Hamiltonian formulation was pre-
sented for inviscid, compressible fluid flow in a rotating domain with a free
surface. First, the nonlinear Hamiltonian dynamics was conjectured and
compared with the corresponding nonlinear compressible Euler equations
with a free surface. Second, the conjectured nonlinear Hamiltonian formal-
ism was derived via variation of a Lagrangian expressed in (extended) Cleb-
sch variables and a subsequent reduction to Eulerian variables. In addition,
the linearisation of the corresponding nonlinear Hamiltonian structure was
derived, which appeared to be the free surface extension of the Hamiltonian
formalism presented in Chapter 2.

These linear and nonlinear continuous Hamiltonian formulations can be
used for the derivation of a numerical model for (in)compressible fluid flows
with free surface dynamics. Here also, the main sensitive part of the scheme
is the satisfaction of appropriate boundary conditions at free surface and
the incompressibility constraint. The boundary conditions and appropriate
DGFEM flux functions have to be chosen such that the resulting discrete
system can still be represented in the Hamiltonian framework. The incom-
pressible limit of the presented Hamiltonian structure can be derived via
the Dirac theory of constraints, as it has proven to result in a robust, stable
and accurate numerical technique for obtaining the incompressible limit on
the Hamiltonian systems discussed in Chapter 2.
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Appendix A

Design and implementation
of a DGFEM application

In Chapter 2 we have introduced a new Hamiltonian DGFEM dis-
cretisation for the linearised Euler equations to compute inertial
waves in a rotating domain. The implementation of this algorithm is
a non-trivial task due to its complexity. In this Appendix we will give
an overview of the design and implementation of this Hamiltonian
DGFEM using the hpGEM toolkit, which was used and extended
during this project. To a greater or lesser extent any implementa-
tion of a DGFEM discretisation requires three cornerstones in the
heart of its design: a mesh, numerical integration and data struc-
tures, and output routines. These three basic modules are a must,
and do not depend on the choice of the basis functions, flux func-
tions or slope limiters that are used in the implementation. Hence,
a library (framework) of predefined structures and methods that are
common to many (discontinuous) finite element methods, is a desir-
able tool that can be used to ease and accelerate the implementation
process of robust and efficient applications.

In this Appendix, the second version of hpGEM, a C++ software
framework for DGFEM discretisations [80], will be introduced. As a
particular example, an implementation of the application based on
the Hamiltonian DGFEM discretisation discussed in Chapter 2 will
be presented.



A.1. Introduction

A.1 Introduction

The process of the transformation of a continuous model and respective
governing equations to its discrete counterpart is called discretisation. This
process is usually carried out prior to the implementation of a numerical
model into a digital set of commands (application). This software applica-
tion enables then computer simulations of the physical phenomena to be
studied.

The discussion of the mathematical techniques and challenges to be met
during the discretisation of the Hamiltonian formulation of the linear Euler
equations for inertial waves is dealt with in the main part of this thesis, here
we will focus on the implementation aspects. Simple and small problems,
with their corresponding discretisations, usually are implemented in Mat-
lab, Mathematica or any other general numerical mathematics framework.
These packages provide not only a wide variety of tools for the implemen-
tation of specific numerical algorithms, but also frameworks for building
your own problem specific applications. Unfortunately, those numerical
environments are unsuitable for the implementation of complex problems
that require more computational resources: in particular processing speed
and memory. Additionally, complex problems result in an enormous num-
ber of commands (computer program), which are virtually impossible to
structure, maintain and extend, due to the lack of an Object Oriented
Programming (OOP) environment.

In contrast to conventional linear programming, where the program is
presented as a list of commands and/or collection of commands (subrou-
tines) to perform, an OOP is a set of interacting objects. An object is
viewed as an encapsulator of some particular data with a set of functions
designed to assist the usage of the data in a safe and responsible manner.
This way small changes to the internal structure or methods of an object
are extremely localised and do not require any additional changes in the rest
of the program. Existing abstraction levels enable inheritance for objects
(new object descriptors, classes can be created based on existing ones) and
polymorphism (possibility of one common interface for many implementa-
tions, with mandatory common kernel (base) parts for different objects).
Above all, OOP makes program code more readable, enables code reuse,
facilitates future support and extendibility. Hence, flexible, robust and
OOP-enabled environments are very desirable tools in the set of techniques
useful for any numerical mathematician, especially in the development of
software for problems with a high degree of complexity.

Nevertheless, those environments are not able to provide frameworks
suitable for arbitrary numerical discretisations, and thus they are developed
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for specific discretisation methods, such as the finite difference method, i.e
MathPDE [97], the finite volume method (FV), i.e. OpenFVM [48] and the
finite element method (FEM), i.e., libMesh [52].

In this Appendix we will discuss the second version of the C++ soft-
ware framework hpGEM for the implementation of discontinuous Galerkin
finite element discretisations. The hpGEM framework provides the build-
ing blocks for developing (DG)FEM algorithms, enabling an easy, fast and
robust application development. In Section A.2, we will give a brief in-
troduction to the second version of the C++ software framework hpGEM.
Next, in Section A.3, we consider a particular case study, viz. the com-
putation of (in)compressible inertial waves discussed in Chapter 2. We
will demonstrate the implementation procedure of the numerical applica-
tion based on the algorithms and methods provided by hpGEM2.0. In
Section A.4, the current state of hpGEM and future plans are discussed.

A.2 hpGEM: design and implementation

A.2.1 Philosophy of hpGEM

The hpGEM framework is a software package for the implementation
of applications based on the discontinuous Galerkin finite element method.
It was first released six years ago (hpGEM1.0) and the second release is ex-
pected this year (hpGEM2.0). Since the package is mainly concerned with
the implementation of DGFEM discretisations, first a brief introduction on
DGFEM is given below.

The starting point for a discontinuous Galerkin discretisation is a weak
formulation of the PDEs. Next, the computational domain is tessellated
into a large number of elements. In every element, the discrete equations are
obtained via an approximation of the unknown variables using element-wise
continuous basis functions. The solution is, however, allowed to be discon-
tinuous across neighbouring element faces; there is only a weak coupling in
between elements using numerical fluxes. The numerical fluxes are defined
at the element faces in exactly the same way as in the finite volume method.
So even though DGFEM is an extension of the finite element method, from
an implementational point of view it has more similarities to a finite volume
method. Actually, a zeroth-order finite volume method and zeroth-order
DGFEM method are the same numerical method. For the element integra-
tion and other single element and face manipulation routines every element
is mapped to a corresponding unit reference element. In this way a uni-
fied action can be performed on the same reference element and later be
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transformed to every physical element, via corresponding transformation
matrices.

All DGFEM discretisations have one common entity: they all define
a weak formulation of the corresponding PDEs and introduce numerical
fluxes. Hence, in these terms the mathematical formulation of a DGFEM
discretisation is independent of the specific problem, and more impor-
tantly, the basics of the implementation of such a problem is the same
for all DGFEM discretisations. The latter motivated the introduction of
the hpGEM library based on the following general ideas:

• Framework provides the building blocks for the implementation of
DGFEM methods upon which the users’ application can be built.

The kernel of the framework is viewed as a library of data structures
and corresponding methods, contrary to the view of a solver for a
specific type of equations or physical processes. It is intended to
provide key ingredients for numerical applications to help numerical
scientists to concentrate more on application specific problems, rather
than routine implementation of DGFEM basics.

• Framework is dimension and element type independent.

The functionality and data structures provided by the framework is
the same for all dimensions d = 1, . . . , 4. The latter is achieved by
using special templated classes available in C++. Templates are a
metaprogramming technique where special tags are used as an indi-
cation for the compiler to unwrap temporary source code for all types
instantiated in the user source code, which is merged by the compiler
with the rest of the user source code and then compiled.

The framework provides a large variety of element types for all sup-
ported dimensions. To support this, the architecture of the software
framework largely exploits inheritance and polymorphism concepts
of C++.

• Framework provides different levels of data and method access, de-
pending on the experience of the user.

An experience driven application development is at the heart of this
library. Depending on the proficiency in C++ and numerical methods
different interfaces are suggested. The latter means that the frame-
work offers fast and easy implementation for simple, straightforward
applications in order to assist inexperienced users, but at the same
time it enables a full control of the data and available methods for
an experienced numerical scientist.
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• Framework includes a full self-test suite and extensive documentation.

The hpGEM framework is positioned as open-source software, is dis-
tributed freely, and encourages the external users to be part of the
development team. This means that ideally the kernel of the library
is not fixed and will be evolving in time. Therefore, an extensive
unit test framework is a must. It is an essential validation tool for
any change in the hpGEM kernel. Unit tests validate the correctness
of individual classes, procedures and modules. In addition to the
unit tests, the hpGEM testing framework contains test-applications,
which validate collaborative tasks and features.

Documentation is provided via precompiled Doxygen files, which are
also available online, and some application-tutorials for the demon-
stration purposes.

• Utilities wrapping the kernel are included in the framework.

Various utilities, such as multigrid, generation of various sets of ba-
sis functions, algorithms for hp-refinement, projection of continuous
functions on FEM spaces, etc. are provided via extra layers of utili-
ties around the kernel of hpGEM.

• Framework does not require any external library.

The hpGEM framework is a self-sufficient library. The library installs
as a one entity and does not require any external libraries. However,
it is worth to mention that the framework embeds some linear alge-
bra functionality borrowed from open-source BLAS libraries. User
applications may include their own external libraries, such as boost,
PETSc and/or SLEPc, etc.

• Framework supports various input and output environments.

The mesh of the tessellated domain can be either imported or, in the
case of a simple geometry, be generated via internal utilities. The
main external mesh format is the Centaur mesh generator. However,
additional gMesh format support is also planned to be implemented.

Tecplot data format is our main data-output format. Despite the fact
that the open-source Paraview data visualisation tool has support for
commercial Tecplot data files, we plan to add conversion utilities to
various file formats (Matlab, Mathematica, native Paraview and etc.)
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A.2.2 Design Considerations

The previous sections of this Appendix have already given a motivation
for the specific choice of the C++ general-purpose programming language
as the main programming environment for hpGEM. The latter, of course,
does not exclude a possibility of linking to libraries written in other lan-
guages. The kernel of the hpGEM framework uses, however, mainly C++,
in combination with the STL library, and includes in a cross-compilation a
Fortran library from BLAS for basic linear algebra operations.

The general advantages of OOP are reusability, reliability, robustness,
extensibility and maintainability. All of these properties are essential in
the development of software for highly complex applications. Especially for
numerical methods OOP has the additional advantage that mathematical
entities can be directly related to individual classes. The latter allows nu-
merical scientists, who are used to manipulate mathematical formulations
rather than objects, subroutines or other sequences of program instructions,
to be more comfortable with the development of applications.

The general structure of the hpGEM framework is described using the
Unified Modelling Language (UML). The Unified Modelling Language is
a general-purpose modelling language often used in the design stage of a
complex software development process. It includes a set of graphic notation
techniques to create visual models of object-oriented software architecture.
Later in this chapter UML class and collaboration diagrams will be used
to demonstrate classes, attributes and operations.

The hpGEM framework consists of five kernel forming namespaces1

Base, Integration, Geometry, Linear Algebra, Output and a sub-
junctive Utilities namespace. These namespaces are discussed in turn
next.

Namespace Geometry

All geometrical concepts (reference and physical geometries, correspond-
ing transformations, etc.) are assembled in the Geometry namespace. The
hpGEM framework supports various mesh-types, including mixed meshes.
In Table A.1 possible geometric shapes are listed. Without exception, every
specific reference geometry is derived from an abstract ReferenceGeometry
class, which is templated with a dimension (DIM). Templates enable a sin-
gle base class description for every dimension (d = 1, . . . , 4 is implemented).

1Namespaces allow to localise the visibility of various entities such as classes,
objects and functions under a name. This way the global scope of the programm
can be divided in ‘sub-scopes’, each one with its own name.
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A detailed inheritance map diagram for reference geometries is given in
Figure A.1. One can notice that all reference geometries are regular, unit
geometrical shapes, in contrast with physical geometries (see Table A.1),
which can be of a general kind.

Polymorphism, which is supported by C++, enables the possibility to
operate with any of the derived objects (reference geometries) through one
generic pointer to the base class ReferenceGeometry, which defines a generic
interface. Therefore, mesh construction does not require a separate imple-
mentation for every shape type, but rather needs one generic implementa-
tion, assuming manipulations with a pointer to the base class.

As already mentioned polymorphism is used to define the variety of
physical shapes with PhysicalGeometry as a base class, which is templated
with a dimension. Moreover, every derived instance of PhysicalGeometry in-
capsulates a pointer to ReferenceGeometry. Meanwhile, ReferenceGeometry
inherits additional functionality: refinement and mapping of codimensions
of a given shape through RefinementGeometry and MappingCodimensions,
respectively. It is very important to note, that only one particular reference
geometry object is created per shape-type, which is accomplished via the
singleton design pattern [36]. A summary of the geometry oriented part of
the kernel is given in the UML class map in Figure A.2.

Dimension Shape Number of Nodes Number of Faces
1 Line 2 2
2 Triangle 3 3

Quadrilateral 4 4
3 Pyramid 5 5

Tetrahedron 4 4
Hexahedron 8 6

Triangular Prism 6 5
4 Octachoron 16 24

Table A.1: Geometrical shapes supported in hpGEM for each dimension.

Namespace Base

The namespace Base provides safe interfaces to the data structures and
corresponding methods of hpGEM.

In particular, the user is provided with two main classes as entry points
to the kernel, HpgemUI and HpgemUISimplified. The difference, made ob-
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Figure A.1: Doxygen compiled UML diagram of the ReferenceGeometry
class and its ‘children’.
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Figure A.2: UML collaboration diagram of the PhysicalGeometry class.
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vious in the naming convention, is revealed in the level of access to the
kernel and required default behaviour. In case of HpgemUISimplified, the
user is choosing a fully automatic regime, where most of the required ma-
nipulations are defined through the default behaviour of the package, e.g
definition of basis functions, choice of output routines, definitions of (Gauss)
quadrature, pre-existing face and element integrands to be filled with cor-
responding expressions, etc.

Simple DGFEM discretisations, which do not require any special treat-
ment, are advised to be implemented through the HpgemUISimplified inter-
face. The user inherits from HpgemUISimplified the following information

• face and element integrand virtual functions, to be implemented via
appropriate numerical flux and element integrand expressions;

• a default set of basis functions, the order of which is chosen through
the configuration variables and, by default, is the same for every
element;

• a default set of Gauss integration rules, the order of which is chosen
automatically depending on the order of the basis functions for the
current element;

• a virtual function to be implemented for setting initial conditions and
reading configuration variables;

• a virtual function for importing or generating a mesh and initialising
corresponding mesh-manipulation tools (space-time converter, mesh
mover, mesh refiner, etc.);

• a predefined solve method, which initialises the data structures, checks
if the initialisation step is complete and valid, performs a time step,
which includes an iteration over all elements and faces, with subse-
quent element and face integration and output in the corresponding
data structure, associated with every element and face.

This simplified interface assists non-experienced users in implementing their
DGFEM methods. Hiding most of the implementation details in the auto-
mated code under the interfaces, the framework helps the numerical scien-
tist to concentrate only on the specific part of his implementation, leaving
cumbersome routine implementation details to hpGEM.

In case of a DGFEM implementation for more complex problems, which
require direct access and nontrivial manipulations with the kernel of the
package, the suggested entry class is HpgemUI. In this case, the user has a
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safe direct access to all data and methods. To enable support of multigrid
and/or a cascade of meshes, HpgemUI encapsulates a collection of meshes
in a LevelTree hierarchical tree-type data structure, where a single mesh is
presented via the MeshManipulator class (see Figure A.3).

Figure A.3: MeshManipulator UML class diagram.

The MeshManipulator class presents an object for a mesh represen-
tation in hpGEM. It incapsulates a collection of elements (Element), faces
(Face) and nodes (Node), and provides methods for configuring, initialising,
generating and destroying them.

Every Element class, templated with a dimension, inherits from a tem-
plated ElementGeometry class, which provides the geometrical details of
the element, and a templated ElementData class, which enables element
relevant data storage, including the possibility of archiving data from sev-
eral time steps. See Figure A.4 for details. It is worth mentioning that the
geometry related part of the element belongs to the namespace Geometry.

From the class map given in Figure A.4 it is apparent that every element
has: (i) its unique identifier; (ii) its unique geometry, with corresponding
reference geometry, and its unique mappings and refinement techniques;
and (iii) a set of basis functions and quadrature rules.
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Figure A.4: Element UML collaboration diagram.
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The same division into geometrical and data related entities is per-
formed for the Face class, for details see Figure A.5. As one can see from
the class diagram, Face is described through only two pointers to the left
and right neighbouring elements. Note, left and right here are not used as
an indicator for the direction, but as a simple identifier. Additionally, Face
incapsulates a data container for storage of a pre-computed cache: such as
normals, Jacobians, etc., to speed-up the calculations in case of time-static
meshes.

Namespace Integration

The namespace Integration aggregates every aspect of element and
face integrations. Integration routines are an essential part of any (DG)FEM
package, due to their presence in each and every implementation of a weak
formulation. The architectural design of integration routines is very chal-
lenging. On the one hand, the implementation has to be as robust and
efficient as possible, since it is executed in nearly every manipulation with
FEM based algorithms. On the other hand, the variety of places, ways and
objects to be integrated force the implementation to be as generic as possi-
ble. Additionally, the user should have an ability to use default integration
rules (regenerated for each element type), as well as to add his/her own
integration rule implementations.

All numerical integration is handled through the utilisation of a default
set of Gauss quadrature rules, which use a weighted sum of the integrand
at the quadrature points for the given reference geometry. The hpGEM
framework supports up-to seventh order Gauss quadrature rules for every
available shape. Of course, the user is free to add new and higher order inte-
gration rules. It is also worth mentioning that the transformation between
reference and physical spaces takes place automatically via the Jacobian of
the corresponding mapping.

To integrate any object (mathematical function, variable, constant,
etc.) one has to create an ElementIntegral or FaceIntegral object, call the
corresponding function integrate and provide the required arguments, as
follows:

MyElementIntegrandType<DIM> myElIntegrand ;
for ( ListOfElementsT : : i t e r a t o r i t=elements . begin ( ) ;

i t != elements . end ( ) ; ++i t )
{

Element<dim>& element = ∗ i t ;
/// In t e g r a t e us ing a quadrature ru l e o f the element
e l I n t e g r a l . i n t e g r a t e ( element , myElIntegrand , r e s u l t ) ;

}
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Figure A.5: Face UML collaboration diagram.
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The code sample provided above, iterates through the collection of di-
mension dependent Elements and integrates the integrand provided via the
variable myElIntegrand over each element. The second argument of the
integrate function can be

• a class or struct with an appropriate operator definition;

template <unsigned int DIM>
class MyElementIntegrand :

public I n t e g r a t i o n : : ElementIntegrandBase<DIM>
{
public :

void operator ( ) ( const Base : : Element<DIM>& elem ,
const Geometry : : PointReference<DIM>& p ,
double& r e t )

{
/// add your in tegrand here
r e t = p [ 0 ] ∗ p [ 1 ] ∗ p [ 2 ] ; // f = x∗y∗ z ;

}
} ;

• a global function with appropriate arguments;

template <unsigned int DIM>
void MyElementIntegrand ( ) ( const Base : : Element<DIM>& elem ,

const Geometry : : PointReference<DIM>& p ,
LinearAlgebra : : NumericalVector& r e t )

{
/// add your in tegrand here
r e t [ 0 ] = p [ 0 ] ∗ p [ 1 ] ∗ p [ 2 ] ; // f = x∗y∗ z ;

}

• a class method with appropriate arguments (in this case, the method
integrate needs an additional pointer to the object owner of the
integrand-function);

template <unsigned int DIM>
class SimpleDemoProblem : public HpgemUISimplified<DIM>
{

public :
void e lementIntegrand ( const Base : : Element<DIM>& elem ,

const Geometry : : PointReference<DIM>& p ,
LinearAlgebra : : Matrix& r e t )

{
/// add your in tegrand here

r e t [ 0 ] [ 0 ] = p [ 0 ] ∗ p [ 1 ] ∗ p [ 2 ] ; // f = x∗y∗ z ;
}

}
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The last argument of the function, which implements the integrand
expression, is in all three cases different. The type of this last argument in
the integrand-function automatically sets the type of the returning value in
the method integrate. The latter means that one can control the data type
of the return object through the definition of the integrand-function. For
example, in the first case, the type of the return value result is a double, in
the second case a NumericalVector and in the last case a Matrix.

Namespace Linear Algebra

The namespace Linear Algebra provides efficient and robust linear
algebra functionality. Numerous tests showed that the current implemen-
tation based on valarray2 is the fastest, most efficient and robust imple-
mentation of the required functionality. Even though the C++ implemen-
tation is cross-compiled with the BLAS library that is written in Fortran,
for some additional functionality, it does not require the external library
installation. The two main representatives of this namespace are Numer-
ical Vector and Matrix. A detailed description of the functionality can be
found in the Doxygen documentation available online. A summary is given
in Figure A.6

Namespace Output

The hpGEM framework offers not only an easy application develop-
ment and robust computations, but also a graphical representation of the
processed data. The default output format is Tecplot (Tecplot, Inc.). Even
though most of the commercially-available Tecplot software files can be
opened by some open-source plotting environments, i.e. Paraview, it is
planned to provide additional scripts for the translation of the Tecplot out-
put data file into Matlab and Mathematica data format, which are more
widely used in the scientific computing community.

In addition, the output can be written on a per-element basis, meaning
that the discontinuous origin of the solution is preserved, which is partic-
ularly useful for code debugging, or as nodally averaged data with forced
continuity. Also, it is worth to mention that all plots in Chapter 2 were
prepared with these output facilities.

2Next generation of constant size arrays available in STL.
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(a) Numerical Vector (b) Numerical Matrix

Figure A.6: Collaboration diagrams of the two main classes in Linear
Algebra
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Namespace Utilities

The namespace Utilities assembles all the features that are not con-
sidered essential, but extraneous to have in the DGFEM software package.
Those features either provide additional functionality or the implemen-
tation of predefined algorithms and methods, such as the calculation of
various norms and normal vectors; multigrid support, with several levels of
meshes; hp-refinement; a default pre-generated set of basis functions up-to
fourth order; a default pre-generated set of Gauss quadrature rules for ev-
ery supported geometry at least up-to seventh order; the ability to generate
a global algebraic problem (global assembly) based on the local representa-
tion on every element; etc. For a full list of features and the instructions,
we refer to the documentation of hpGEM package, available online.

A.3 Inertial waves application in hpGEM

In this section an implementation of the application for (in)compressible
inertial waves presented in Chapter 2 will be discussed. This description
can also be viewed by future users as a tutorial for implementing DGFEM
discretisations in hpGEM.

A.3.1 Configuration file

To make sure that the user is able to run his/her application with differ-
ent parameters without the need to recompile the code, hpGEM introduces
the possibility of configuration variables. Default configuration variables
are defined in the class ConfigurationData, and can be extended by the
introduction of a new, user-defined class for configuration variables inher-
ited from ConfigurationData. The initialisation of these variables is done
through the configuration file and passed to the executable.

To control the safety of the data format of the configuration file, a
special HTML based configuration file generator was created. This wizard-
like builder walks the user through the sheets of configuration variables,
grouped by similarity, and asks the user to set the appropriate values,
while in parallel performing some sanity checks.

The configuration variables for the inertial waves application are pre-
sented below:

• mode of the application

First, the user has to choose between the various modes available,
see Figure A.7. The possibilities are (i) compressible fluid flow in a
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Figure A.7: The application type is chosen from drop down box.

Figure A.8: Dimensions of the domain in all three directions, with corre-
sponding number of elements in the respective directions.

box with periodic boundary conditions, (ii) compressible fluid flow
in a box with solid-wall boundary conditions, (iii) Kelvin waves in
a rotating channel (x,z-directional periodicity), (iv) incompressible
flow in a rotating domain with periodic boundary conditions, and
(v) incompressible flow in a rotating domain with solid-wall bound-
ary conditions (‘classic’ inertial waves). After making a choice, the
configuration file is automatically renamed to the appropriate file-
name.

• dimensions of the domain and tessellation parameters

Second, the user has to specify the dimensions of the problem by
setting the length of the domain in each direction, and to give the
number of elements for each direction in the tessellation (see Fig-
ure A.8).

• time related values
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Figure A.9: Configuration variables related to time.

Figure A.10: Time related configuration variables used in the discretisation.

Third, the end-time, the frequency of plots in terms of the time steps,
and the number of time steps in each period have to be set (see
Figure A.9).

• discretisation parameters

The final input the user has to specify is the number of degrees of
freedom in each element and the corresponding value of the θ pa-
rameter, which is used in the definition of the flux functions in the
corresponding DGFEM discretisation, see Figure A.10. After these
values are set, the user has to push the Generate button and save
the created configuration file to some location on disc.

The generated file is passed to the executable at run-time, which is being
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parsed by the virtual method readFile() implemented by the user. The
latter manipulations results in a fully initialised inertial waves application.

A.3.2 Mesh generation

In Chapter 2, the inertial waves model was mainly discussed in cuboid-
type domains in three-dimensional space. The domain may, however, also
have a constant background rotation. The latter indicates that the im-
plementation concerns a discretisation in three-dimensional space and in a
possibly rotating cuboid with solid walls and/or periodic boundaries.

Fortunately, hpGEM provides sufficient functionality: it automatically
generates a rectangular (triangular) mesh for a simple cube, provided the
dimensions of the cube and the number of elements in each coordinate
direction are known. Note, the generation of a mesh for other geometries
can either be implemented in hpGEM as a new utility, or the required mesh
can be imported through the supported interfaces, assuming the mesh is
generated by an external package.

The class HEuler is inherited from the three-dimensional specialised
instantiation of the HpgemUI providing an access point into the hpGEM
framework. Due to the non-trivial DGFEM discretisation, the HpgemUI
interface was chosen as a parent for the inertial waves implementation class,
instead of the simplified ‘semi-automatic’ HpgemUISimplified.

unsigned int DIM = 3 ; /// s e t t i n g dimension o f the problem to 3D
class HEuler : public Base<DIM>
{
public :

/// i n i t i a l i s i n g the mesh by g i v i n g the range o f the domain and
/// the number o f e lements in each d i r e c t i on .
void i n i t i a l i s e M e s h ( )
{

RectangularMeshDescr iptor<DIM> rectangularMesh ;

rectangularMesh . bottomLeft [ 0 ] = 0 ; // x coord inate
rectangularMesh . bottomLeft [ 1 ] = 0 ; // y coord inate
rectangularMesh . bottomLeft [ 2 ] = 0 ; // z coord inate
rectangularMesh . t opLe f t [ 0 ] = 1 ; // x coord inate
rectangularMesh . t opLe f t [ 1 ] = 1 ; // y coord inate
rectangularMesh . t opLe f t [ 2 ] = 1 ; // z coord inate
rectangularMesh . numElementsInDIM [ 0 ] = 8 ; // in x−d i r e c t i on
rectangularMesh . numElementsInDIM [ 1 ] = 8 ; // in y−d i r e c t i on
rectangularMesh . numElementsInDIM [ 2 ] = 8 ; // in z−d i r e c t i on

addMesh ( rectangularMesh , RECTANGULAR) ;
return ;

}
} ;
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The code fragment shows a mesh generation routine in HEuler, where a
simple rectangular mesh is created based on input parameters provided via
the mesh descriptor RectangularMeshDescriptor. A cuboid is represented
with two diagonal points, e.g. bottom-left and top right. Additionally, the
RectangularMeshDescriptor includes variables with a number of points in
each direction. After initialisation of a rectangular domain with size [0, 1]3,
and the assignment of the tessellation variables to 8, viz. the number of
cubes in each direction, the descriptor is added to the mesh collection. Note,
the inertial waves application uses only one mesh per application, and the
specific numbers in the assignments are only for presentation purposes, in
a real application they are read from a configuration file.

A.3.3 Initial projection

In all possible modes of the inertial waves application, the user is ini-
tialising the program with the solution at initial time. Usually, the ini-
tialisation of the unknowns involves a projection of continuous (discrete)
functions on the chosen FEM spaces. In general, let p(x, t) be a vector
of unknowns and p(x, 0) = q(x). In each element of the tessellation, the
following algebraic system is formed

Mp = b, (A.1)

where Mij =
∫
K φiφj dk is a local mass matrix in the current element K

and the right hand side vector is defined through bj =
∫
K qφj dk, with

i, j = 1, . . . , dof . Subsequently, the unknown variables p can be computed
by solving the algebraic equation (A.1). For definitions of the FEM spaces
and corresponding basis functions, we refer to Chapter 2.

In case of a stationary mesh, the inverse of the local mass matrix can
be also stored in the element, to speed-up future calls.

A.3.4 Integrands

As was already discussed in the previous sections, to integrate a func-
tion over a face or element one needs to provide an integrand function to
the corresponding integrator. The integrand function defines the integral
expression. In the current application various integrands has been defined.
First of all, to prepare for an application of Dirac’s constraint theory to the
compressible framework, one has to create the global algebraic system.

U̇j =−M−1
jk RlDIVkl − 2Ω×Uj (A.2a)

MklṘl =Uj ·DIVjk (A.2b)
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Recalling the definitions from Chapter 2, M is the global mass matrix (con-
tains element integrals only), DIV = E −G is the global representation
of a discrete divergence operator (contains element integrals in E and face
integrals in G), and constant rotational terms (containing element inte-
grals only). The latter suggests that the following integrands have to be
implemented

• Mass matrix

void ca lcu lateMassMatr ix ( const ElementT& element ,
const PointReferenceT& p ,
LinearAlgebra : : Matrix& massMatrix )

{
.
.
.

}

• Gradient of a basis function

void e lementIntegrand ( const ElementT& element ,
const PointReferenceT& p ,
VectorOfMatr ices& returnObject )

{
.
.
.

}

• Flux integration over a face

void f a c e In t eg rand ( const Face& face ,
const PointPhysicalT& normal ,
const PointReferenceT& p ,
VectorOfMatr ices& r e t )

{
.
.
.

}

Due to the locality of the DGFEM discretisation, all global matrices are
notably sparse. Therefore, the PETSc sparse data format [10] has been
used to take advantage of the reduced memory storage.

A.3.5 Dirac’s algorithm

Next, the compressible system has to be taken to its incompressible
limit. Application of the Dirac algorithm from Chapter 2 results in the
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following algebraic system

U̇j = −2Ω×Uj − λlM−1
jk DIVkl (A.3a)

λlDIVjkM
−1
jm ·DIVml = −DIVjk · 2Ω×Uj . (A.3b)

The resulting two algebraic systems of equations can be merged into one
global system, with corresponding matrices

PẊ = QX, (A.4)

where X = (U,Λ)T . Obviously, P and Q are not time dependent, in
contrast to X. The formation of those matrices is done with the createIn-
compressibleSystem() function. The required sparse matrix operators are
imported from the corresponding PETSc library.

A.3.6 Time integration

The appropriate time integration applied to (A.4) is implemented in
the function solve(). The time integrator for discrete Hamiltonian systems
needs to be symplectic. The current version implements a modified mid-
point time integrator.

A.3.7 Output

For output the implementation uses the default Tecplot routines, avail-
able in hpGEM. All plots presented in the Chapter 2 were produced via
the output() function of the HEuler class. Note also that the number of
time-steps after which the solution data is uploaded to the external file is
defined through the corresponding configuration variable.

A.4 Summary and future of hpGEM

In this Appendix, a brief overview of the hpGEM C++ software package
was presented. First, the philosophy of the library was introduced combined
with the basic requirements for a general open-source DGFEM package.
Next, the architectural solutions were discussed in detail.

An example of the implementation of an application to compute inertial
waves in an (in)compressible fluid was presented. Several important stages
of the application have been pinpointed and difficulties have been discussed.
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Future work will include the extension to parallel simulations and run-
time live-output regimes, but more importantly the hpGEM framework is
seen to transform into a wizard-driven DGFEM application development
environment, where the code of an application is generated from the in-
serted or chosen properties provided by the wizard sheets.
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Summary

The main focus of this thesis is to develop numerical discretisations
for both compressible and incompressible inviscid flows that also preserve
conservation laws at the discrete level. Two alternative approaches are
discussed in detail: a semi-analytical solution; and, a fully numerical dis-
cretisation.

The semi-analytical solution is derived for the case of incompressible
inertial gyroscopic waves in a three-dimensional rotating rectangular paral-
lelepiped. By performing a detailed numerical comparison it is shown that
the semi-analytical solution vastly improves on the state-of-the-art solution
previously available in the literature. Despite the improved accuracy of this
new semi-analytical solution, further comprehensive investigations revealed
a small weakness near the boundaries of the domain. A novel finite element
method is derived that compensates for the known weaknesses in both the
original and new semi-analytical approaches. This numerical approach al-
lowed further investigation of inertial waves and associated physical phe-
nomena.

Subsequently, the thesis investigates the development of conservation
law preserving Hamiltonian discretisations modelling (in)compressible fluid
flow in three-dimensional domains with various boundary conditions. The
continuous Hamiltonian description of the physical phenomenon is discre-
tised via a discontinuous Galerkin method, which allows the construction
of highly stable, conservative, energy preserving numerical discretisations
for both the compressible and incompressible cases. This numerical scheme
preserves the Hamiltonian mathematical structure even at the discrete level,
which facilitates highly accurate and robust simulations of (in)compressible
fluid flows. For the particular case of inertial gyroscopic waves this numer-
ical scheme is more robust and accurate than the corresponding aforemen-
tioned semi-analytical solutions.

Finally, a new version (version 2) of the in-house open-source C++ soft-
ware that enables fast and easy implementation of discontinuous Galerkin
discretisations (hpGEM) is introduced. The discussion evolves around the
philosophy, design principles and aim of the package. Additionally, a set of
new features and guidelines how to use the package are highlighted via a
series of illustrative, small, step-by-step examples.





Samenvatting

Het centrale thema van dit proefschrift is de ontwikkeling van numerieke
methoden voor zowel samendrukbare als niet-samendrukbare wrijvingsloze
stromingen die ook aan de behoudswetten voldoen na numerieke discretiza-
tie. Twee alternatieve methoden worden in detail besproken: semi-
analytische methoden en een volledige numerieke aanpak.

De semi-analytische oplossing is berekend voor inertiale gyroscopische
golven in een driedimensionaal roterend rechthoekig parallellepipedum. Via
een gedetailleerde vergelijking van de resultaten wordt aangetoond dat de
oplossing aanzienlijk nauwkeuriger is dan de tot nu toe in de literatuur
beschikbare oplossing. Na een uitgebreide vergelijking van de resultaten
laat de nieuwe semi-analytische methode echter ook zien dat de oplossing
aan de rand van het domein niet optimaal is. Om dit probleem op te
lossen is er een nieuwe eindige elementenmethode ontwikkeld die de on-
nauwkeurigheden in de oorspronkelijke en nieuwe semi-analytische metho-
den reduceert. Deze nieuwe numerieke benadering maakt het mogelijk om
traagheidsgolven en gerelateerde fysische verschijnselen te bestuderen.

Het tweede onderwerp in dit proefschrift is de ontwikkeling van Hamil-
toniaanse numerieke technieken voor niet-visceuze (on)samendrukbare stro-
mingen in driedimensionale domeinen met verschillende typen randcondi-
ties behoudt. De oorspronkelijke Hamiltoniaanse formulering van de
fysische verschijnselen wordt gediscretiseerd met een discontinue Galerkin
methode, hetgeen resulteert in een stabiele, conservatieve en energie be-
houdende numerieke discretizatie voor zowel samendrukbare als niet-
samendrukbare stromingen. Deze numerieke discretizatie behoudt de Hamil-
toniaanse structuur, hetgeen resulteert in zeer nauwkeurige en robuuste
numerieke simulaties van (on)samendrukbare stromingen. Voor het spec-
ifieke geval van inertiale gyroscopische golven is de numerieke methode
zelfs nauwkeuriger en robuuster dan de eerder genoemde semi-analytische
oplossingen.

Als laatste onderwerp wordt een nieuwe versie (versie 2) van de hpGEM
C++ software voor het snel en makkelijk implementeren discontinue Galerkin
discretizaties besproken. Deze software is beschikbaar voor gebruik door
derden. Speciale aandacht wordt gegeven aan de ontwerp filosofie, ontwerp
principes en het doel van het software pakket. Daarnaast worden een aan-
tal nieuwe mogelijkheden besproken en richtlijnen gegeven hoe het software
pakket gebruikt kan worden. Deze voorbeelden worden stap voor stap uit-
gewerkt.
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